Compoglass® F
Compoglass® Flow

Scientific Documentation
TABLE OF CONTENT

1. Introduction 4
 1.1 Requirements Placed on a Restorative Material 4
 1.1.1 Working requirements 4
 1.1.2 Physical and chemical requirements 4
 1.1.3 Clinical requirements 4
 1.1.4 Toxicological requirements 4
 1.2 Properties of Glass Ionomers 5
 1.3 Properties of Composites 5

2. Chemistry of Restorative Materials 6
 2.1 Glass Ionomers 6
 2.2 Composites 6
 2.3 Compomers 7
 2.4 Compoglass™ 7
 2.5 Compoglass® F 8
 2.6 Compoglass® Flow 8

3. Technical Data Sheet 9

4. Physical Properties of Compoglass F 11
 4.1 Fluoride release 11
 4.2 Wear 12
 4.3 Bonding with Dentin and Enamel 13
 4.4 Marginal Adaptation in Mixed Class V Cavity Preparations 13
 4.5 Radiopacity According to ISO 4049 13
 4.6 Surface Roughness 15
 4.7 Other Physical Data 15

5. Scientific Studies on Compoglass 16
 5.1 In Vitro Investigation (Physical Measurements) 16
 5.1.1 Bonding strength 16
 5.1.2 Release of Fluoride Ions 16
 5.1.3 Wear Simulation 17
 5.1.4 Hardness 17
 5.2 In Vivo Investigations (Clinical Investigations) 17
 5.2.1 Class V 17
 5.2.2 Deciduous Teeth 18
 5.2.3 Long-Term Temporaries 19

6. Biocompatibility 20
 6.1 Acute Oral Risk 20
 6.2 Histology 20
 6.3 Sensitization 20
 6.4 Mutagenicity 21
 6.5 Cytotoxicity 21

7. Literature 22
Summary
Compoglass was introduced on the occasion of IDS 1995 in Cologne and was the second compomer available. It was well-accepted by the market. Various independent studies have rated Compoglass an excellent product superior to competitive materials. With Compoglass F, we are now offering a yet improved compomer version.

Compoglass F - what has been improved?
- The fluoride release has again been increased
- The surface is yet again smoother
- The marginal adaption has again been improved
- The matrix has been optimized

Advantages of Compoglass F over Compoglass
- The increased fluoride release reduces the risk of developing secondary caries. Compoglass F is thus used in cases with particularly high caries risk and where secondary caries often occurs, i.e. restorations in deciduous teeth and cervical defects.
- The extremely smooth surface features improved polishability and is less prone to palque accumulation.
- The improved marginal adaption results in tighter margins. Therefore, marginal discolouration and marginal caries are less likely to occur.
- The matrix has been optimized with regard to the influence on fluoride release and stability.
1. **Introduction**

Today's patients are no longer satisfied with the purely functional restoration of defective tooth structure. Patient requirements for tooth-coloured restorations cannot be adequately satisfied with glass ionomer cements. Although today's composites offer all the aesthetic possibilities desired, they frequently require more time-consuming working techniques by the dentist. Taking these aspects into account, the new compomer materials (Krejci, 1993) combine the desirable properties of the two restorative materials. Working with compomers is quick and easy. Furthermore, they satisfy the demand for outstandingly aesthetic, cosmetic restorations.

1.1 **Requirements Placed on a Restorative Material**

A restorative material must meet a variety of requirements (Janda, 1988, a, b, c):

1.1.1 Working requirements
- easy shade selection
- optimum consistency (handling)
- high polishability

1.1.2 Physical and chemical requirements
- good mechanical properties
- limited or no solubility
- limited or no shrinkage

1.1.3 Clinical requirements
- excellent resistance to oral conditions
- good shade matching with natural tooth structure
- good stability of shade
- wear resistance similar to that of tooth enamel
- sufficient radiopacity
- excellent adaptation to preparation margins and bonding with tooth substance
- fluoride release

1.1.4 Toxicological requirements
- lowest possible toxicological risk
- biocompatibility
1.2 Properties of Glass Ionomers

- Direct adherence to enamel and dentin
- Long-term release of fluoride ions, which are absorbed by the adjacent tooth structure
- Biocompatibility
- Easy working technique

- Unsatisfactory wear resistance
- Variations in the liquid/powder ratio influence properties
- Sensitivity to moisture during curing
- Weaker bond with dentin than materials combined with special dentin adhesives
- Insufficient aesthetics
- Mixing required
- Highly limited clinical indication

1.3 Properties of Composites

- Excellent physical properties
- High wear resistance
- Polishability
- Good aesthetics
- Good resistance to oral conditions

- No direct bonding with enamel and dentin
- Polymerization shrinkage of 2-5% (volume)
- Time-consuming, sensitive working technique
- Rubber dam recommended

Ivoclar Vivadent has combined the favourable properties of both materials in one new restorative. The following detailed examination of the chemistry of the different restorative materials is intended to clarify the synthesis.

Summary:

A new restorative material combining the favourable properties of glass ionomers and composites is desirable.
2. Chemistry of Restorative Materials

2.1 Glass Ionomers

Composition: Aluminium fluorosilicate glass
Polycarboxylic acid

Curing reaction: Acid-base reaction, complex formation

2.2 Composites

Composition: Monomer with curable double bonds
Filler
Photoinitiator

Curing reaction: Radical polymerization
2.3 Compomers

Composition: Aluminum fluorosilicate glass
Dicarboxylic acid with curable double bonds
Photoinitiator
Monomer with free double bonds

Curing reaction:
1. Radical polymerization (composite reaction)
2. Acid-base reaction (glass ionomer reaction)

Various manufacturers have tried to combine the properties of both composites and glass ionomers. The development of light-curing glass ionomers and compomers (Photac Fil, Fuji II LC, Vitremer, Dyract) simplified the working techniques for this class of materials. Fluoride release, however, was significantly reduced (Torebzadeh et al., 1994) and the strength (Watts et al., 1994; Knobloch and Kerby, 1994) and wear resistance values (Peters et al., 1996) of composite materials were still not reached.

2.4 Compoglass™

Composition: Aluminium fluorosilicate glass ($\bar{\Omega}$ grain size 1.5 μm)
Dicarboxylic acid with curable double bonds
Filler based on composite technology
Photoinitiator
Monomer with free double bonds

Curing reaction:
1. Radical polymerization (composite reaction)
2. Acid-base reaction (glass ionomer reaction)

1 Krejci, 1993
2 Chemical strengthening of monomers (cycloaliphatic backbone = increased toughness), DCDMA monomer
2.5 Compoglass® F

Composition:

- Very fine aluminium fluorosilicate glass (Ø grain size 1.0 µm)
- Dicarboxylic acid with polymerizable double bonds
- Filler based on composite technology
- Photoinitiator
- Modified monomer with free double bonds

Curing reaction:

1. Radical polymerization (composite reaction)
2. Acid-base reaction (glass ionomer reaction)

The following requirements had to be met in the development of a new filler:

- Aluminium fluorosilicate glass with adequate physical strength and fluoride release
- A monomer with a tough backbone containing double bonds as well as supporting acid groups
- A filler mixture giving the material the desired physical properties

Compoglass F is the first restorative material to satisfy all these requirements. Compoglass F releases fluoride from three different sources: aluminium fluorosilicate glass, inorganic fluorides in the adhesive, and ytterbium trifluoride (ytterbium trifluoride, for which Ivoclar Vivadent owns a worldwide patent, has been clinically successful for more than 10 years). Wear resistance and strength have been achieved by chemically strengthening the monomers (cycloaliphatic DCDMA monomer; cycloaliphatic backbone = increased toughness) and adding an additional filler from the field of composite technology (spherosil).

Summary:

Compoglass F is the first real hybrid between glass ionomers and composites.

2.6 Compoglass® Flow

Compoglass Flow and Compoglass F are based on the same compomer chemistry. The flow properties of Compoglass Flow have been developed to meet the indications and requirements of compomers. As a result, Compoglass Flow features a new kind of flowability. The material is injected directly into the cavity. Given its flowability, Compoglass Flow easily adapts to the cavity walls without the use of additional instruments.

- ☺ reliable self-adaptation
- ☺ no material flowing away
- ☺ no trapping of air
- ☺ excellent marginal seal

3 Chemical reinforcement of the monomers (Cyclo compound = increased stability), DCDMA monomer
3. **Technical Data Sheet**

Compoglass® F

Light curing, compomer-based restorative material

Standard - Composition:

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urethane dimethacrylate</td>
<td>11.5</td>
</tr>
<tr>
<td>Polyethylene glycoldimethacrylate</td>
<td>4.6</td>
</tr>
<tr>
<td>Cycloaliphatic dicarboxylic acid dimethacrylate</td>
<td>6.6</td>
</tr>
<tr>
<td>Mixed oxide, silanized</td>
<td>5.9</td>
</tr>
<tr>
<td>Ytterbium trifluoride</td>
<td>11.5</td>
</tr>
<tr>
<td>Ba-Al-Fluorosilicate glass, silanized</td>
<td>59.6</td>
</tr>
<tr>
<td>Catalysts, Stabilizers and Pigments</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Physical properties:

In accordance with ISO 4049 and ISO 9917

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural strength</td>
<td>110 MPa</td>
</tr>
<tr>
<td>Flexural modulus</td>
<td>8200 MPa</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>285 MPa</td>
</tr>
<tr>
<td>Vickers hardness</td>
<td>550 MPa</td>
</tr>
<tr>
<td>Water absorption</td>
<td>39 µg/mm³</td>
</tr>
<tr>
<td>Water solubility</td>
<td>0.25 µg/mm³</td>
</tr>
<tr>
<td>Radiopacity</td>
<td>275 % Al</td>
</tr>
<tr>
<td>Depth of cure (shade Universal)</td>
<td>> 4.5 mm</td>
</tr>
<tr>
<td>Sensitivity to ambient light</td>
<td>> 100 sec.</td>
</tr>
</tbody>
</table>
Compoglass® Flow

Light curing, compomer-based restorative material

Standard -Composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>(in weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urethane dimethacrylate</td>
<td>20.6</td>
</tr>
<tr>
<td>Polyethylene glycoldimethacrylate</td>
<td>6.6</td>
</tr>
<tr>
<td>Cycloaliphat. dicarbonic acid dimethacrylate</td>
<td>5.7</td>
</tr>
<tr>
<td>Mixed oxide, silanized</td>
<td>5.1</td>
</tr>
<tr>
<td>Ytterbiumtrifluoride</td>
<td>10.0</td>
</tr>
<tr>
<td>Ba-Al-Fluorosilikateglass, silanized</td>
<td>51.7</td>
</tr>
<tr>
<td>Catalysts and Stabilizers</td>
<td>0.3</td>
</tr>
<tr>
<td>Pigments</td>
<td>< 0.1</td>
</tr>
</tbody>
</table>

Physical properties:

In accordance with ISO 4049 and ISO 9917

- Flexural strength: 95 MPa
- Flexural modulus: 5000 MPa
- Compressive strength: 325 MPa
- Vickers hardness: 310 MPa
- Water absorption: 35 µg/mm³
- Water solubility: Ø µg/mm³
- Radiopacity: 230 % Al
- Depth of cure (shade Universal): > 4.5 mm
- Sensitivity to ambient light: > 95 sec.
4. **Physical Properties of Compoglass F**

Compoglass F stands out because of the following features:

- Easy, quick working technique
- High degree of fluoride release
- Minimal wear
- Strong bond with dentin and enamel
- Tight marginal seal
- Low shrinkage
- Impressive aesthetics
- Radiopacity
- Smooth, polishable surface
- Easy-to-handle, watery adhesive free from acetone

The physical properties of different restorative materials are presented in the following pages to show the benefits of Compoglass F compared with other compomers and light-curing glass ionomers, as well as to give dentists a suggestion of where to position Compoglass with regard to composites and glass ionomers.

4.1 **Fluoride release**

Cumulative fluoride release from test samples was established in a Tris-lactate buffer (pH 7.2). Additional fluoride release from the Syntac Single Component adhesive was not taken into consideration.

Fluoride release of compomers during 4 weeks.

![Fluoride release graph](image)

In-house investigation, R&D Ivoclar Vivadent Schaan, Liechtenstein

Conclusion: The fluoride release of Compoglass F was increased by 50 % compared with that of Compoglass.
4.2 Wear

The materials were subjected to a combined stress test that consisted of toothbrush and toothpaste wear, rapid temperature changes, and cyclical occlusal stress. The five-year values correspond to 300 minutes of brushing teeth, 1,200,000 masticatory cycles (49N / 1.7 Hz), and 3,000 thermal cycles (5-55°C).

Conclusion: The smaller particle size of the filler of Compoglass F (aluminium fluorosilicate glass 1.0 µm) improves the wear resistance compared to Compoglass (aluminium fluorosilicate glass 1.5 µm).
4.3 Bonding with Dentin and Enamel

Shear bond strength was established with bovine teeth.

In-house investigation, R&D Ivoclar Vivadent Schaan, Liechtenstein

[Compo=Compoglass / Compoglass F = Compoglass F / Syntac SC = Syntac Single-Component]

Conclusion: The high bonding values on enamel are a prerequisite for tight marginal seals. The values were achieved with acid etching.

4.4 Marginal Adaptation in Mixed Class V Cavity Preparations

![Graph showing marginal adaptation over time](image)

Interne Untersuchung, F&E Ivoclar Vivadent Schaan, Liechtenstein

Fazit: The modification of Compoglass F improves marginal quality. Close margins show less tendency for discoloration and caries.

4.5 Radiopacity According to ISO 4049

For restorations in areas that are clinically difficult to reach or even inaccessible, an X-ray of a radiopaque restoration is the only non-invasive means of diagnosing secondary caries. Radiopacity also offers an easy method for documenting the dentist's work.
Conclusion: The radiopacity of Compoglass is achieved by adding ytterbium trifluoride (ytterbium trifluoride, for which Ivoclar Vivadent owns a worldwide patent, has been clinically successful for more than 10 years.
4.6 Surface Roughness

Smooth surfaces are a prerequisite for an aesthetic appearance. Furthermore, they are less susceptible to plaque accumulation than rough surfaces.

The compomers examined were polymerized under a foil and subsequently polished with the indicated instrument. The test samples were polished either with Hawe finishing and polishing disks, or with Politip P rubber polishers from Ivoclar Vivadent.

![Graph showing surface roughness comparison](image)

Rzanny and Welker (1997), University of Jena, Germany

* The test samples were treated with Hawe coarse, medium, fine and x-fine. The diagram indicates the average values.

\(R_a \) mean roughness depth / \(R_t \) maximum roughness depth

Conclusion: The smooth surface of Compoglass is achieved with the fine particle size of the filler. The mean grain size of the fluoro-aluminium silicate glass was reduced from 1.5 µm in Compoglass to 1.0 µm in Compoglass F.

4.7 Other Physical Data

<table>
<thead>
<tr>
<th></th>
<th>Compoglass F</th>
<th>Compoglass ss</th>
<th>Compomer A</th>
<th>Compomer B</th>
<th>Compomer C</th>
<th>Compomer D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural strength*¹</td>
<td>110</td>
<td>105</td>
<td>115</td>
<td>135</td>
<td>160</td>
<td>133</td>
</tr>
<tr>
<td>Modulus of elasticity*¹</td>
<td>8200</td>
<td>8700</td>
<td>7700</td>
<td>11400</td>
<td>17500</td>
<td>12900</td>
</tr>
<tr>
<td>Compressive strength*</td>
<td>285</td>
<td>260</td>
<td>225</td>
<td>261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vickers hardness*</td>
<td>550</td>
<td>510</td>
<td>470</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water solubility*¹</td>
<td>0.25</td>
<td>39</td>
<td></td>
<td>0.33 %</td>
<td>0.47 %</td>
<td></td>
</tr>
<tr>
<td>Water absorption*¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*¹=after 24h, \(H_2O \), 37 °C / ^¹=according to ISO 4049
5. **Scientific Studies on Compoglass**

A large number of independent studies have been conducted on Compoglass since its introduction at IDS 1995 in Cologne. It has been rated an excellent product superior to competitive products. These studies will be summarized below.

5.1 In Vitro Investigation (Physical Measurements)

5.1.1 Bonding strength

<table>
<thead>
<tr>
<th>Title</th>
<th>Results [in MPa]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term bond on dentin</td>
<td>• after 1h: Compoglass 29.5, Dyract 29.7</td>
<td>Jakob et al., 1996</td>
</tr>
<tr>
<td></td>
<td>• after 6 weeks: Compoglass 31.4, Dyract 25.3</td>
<td></td>
</tr>
<tr>
<td>Bonding strength on enamel</td>
<td>• without enamel etching: Dyract 11.2, Compoglass 17.9</td>
<td>Moll et al., 1996</td>
</tr>
<tr>
<td></td>
<td>• with enamel etching: Dyract 33.6, Compoglass 32.1</td>
<td></td>
</tr>
<tr>
<td>Bond on enamel and dentin</td>
<td>• Enamel: Dyract 13.5, Compoglass 18.2</td>
<td>Leach and Aboush, 1996</td>
</tr>
<tr>
<td></td>
<td>• Dentin: Dyract 18.9, Compoglass 18.4</td>
<td></td>
</tr>
<tr>
<td>Bond on dentin</td>
<td>• Compoglass 16.29, Fuji II LC 15.42, Dyract 15.33</td>
<td>Garcia-Godoy et al., 1996</td>
</tr>
<tr>
<td>Bond on dentin</td>
<td>• Photac Fil 0.5, Ketac Fil 3.0, Ketac Silver 3.1, Vitremer 7.9, Fuji II LC 8.2, Dyract 9.8, Compoglass 13.7</td>
<td>Peutzfeld 1996</td>
</tr>
<tr>
<td>Bond on deciduous teeth</td>
<td>• Herculite Optibond 6.07, Dyract 8.67, Compoglass 11.94</td>
<td>Jumlongras and White, 1997</td>
</tr>
<tr>
<td>Bond on enamel with and without acid etching</td>
<td>• Without acid etching: Compoglass 6.9, Dyract 4.5</td>
<td>Buchalla et al., 1997</td>
</tr>
<tr>
<td></td>
<td>• 20 s acid etching: Compoglass 22.4 Dyract 16.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 40 s acid etching: Compoglass 18.1, Dyract 14.8</td>
<td></td>
</tr>
</tbody>
</table>

5.1.2 Release of Fluoride Ions

<table>
<thead>
<tr>
<th>Title</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride release in an acidous or neutral environment</td>
<td>• neutral pH [µg/cm²]: Vivaglass Base 49, Dyract 52, Compoglass 98</td>
<td>Attin et al., 1996</td>
</tr>
<tr>
<td></td>
<td>• acidous pH [µg/cm²]: Vivaglass Base 54, Dyract 87, Compoglass 113</td>
<td></td>
</tr>
<tr>
<td>Fluoride release during 6 months</td>
<td>• [µg/mm²d]: Ketac Fil 0.11, Compoglass 0.05, Chem Fil Superior 0.03, Dyract 0.02</td>
<td>Shaw and McCabe, 1997</td>
</tr>
<tr>
<td>Fluoride release of glass ionomers, comomers, and composites</td>
<td>• After 1 day [ppm]: Fuji II LC 63.8, Fuji II 54.6, Vitremer 54.4, Compoglass 30.9, Dyract 27.2, Heliomolar 13.6</td>
<td>Nunez et al., 1997</td>
</tr>
<tr>
<td></td>
<td>• After 44 days [ppm]: Fuji II LC 16.7, Fuji II 11.3, Vitremer 12.2, Compoglass 17.0, Dyract 6.2, Heliomolar 3.5</td>
<td></td>
</tr>
<tr>
<td>Fluoride release of comomers and flowable composites</td>
<td>• After 1 week [ppm]: Compoglass 9.77, Dyract 1.84, Crystal 7.71, Ultraceal XT 0.71, Flow It 0.42</td>
<td>Rasmussen et al., 1997</td>
</tr>
<tr>
<td></td>
<td>• After 1 month [ppm]: Compoglass 2.56, Dyract 1.07, Crystal 1.03, Ultraceal XT 0.20, Flow It 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• After 8 months [ppm]: Compoglass 0.98, Dyract 0.93, Crystal n/t, Ultraceal XT n/t, Flow It 0.00</td>
<td></td>
</tr>
</tbody>
</table>
5.1.3 Wear Simulation

<table>
<thead>
<tr>
<th>Title</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion of silicophosphate and glass ionomer cements</td>
<td>• Drala stone cement (highest abrasion) > Drala steel cement > Cupro Dur > Trans Lit > Ketac Silver > Fuji IX > Dyract > Compoglass > Valiant (least abrasion)</td>
<td>Bauer et al., 1996</td>
</tr>
</tbody>
</table>

5.1.4 Hardness

<table>
<thead>
<tr>
<th>Title</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface hardness of glass ionomers and compomers</td>
<td>• Rockwell hardness: Vitremer 14.1, Photac Fil 14.4, Fuji II LC 27.7, Fuji IX 35.5, Dyract 38.9, Compoglass 44.4, Z100 62.6</td>
<td>Peutzfeld et al., 1997</td>
</tr>
<tr>
<td>Microhardness</td>
<td>• Vickers hardness: Compoglass 68.8, Fuji II LC 62.7 Dyract 57.7, Vitremer 50.0</td>
<td>Ellakuria et al., 1996</td>
</tr>
</tbody>
</table>

5.2 In Vivo Investigations (Clinical Investigations)

5.2.1 Class V

<table>
<thead>
<tr>
<th>Head of Study</th>
<th>Subject</th>
<th>Experimental</th>
<th>Status/Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. U. Blunk, T. Richter, ZA / Prof. J.F. Roulet Centre for Dentistry at the Charité Humboldt University, Berlin, Germany</td>
<td>Clinical testing of Compoglass and a comparable product (Product A) for the restoration of cervical cavities</td>
<td>One hundred teeth with non-caries cavities are being studied. The cavities were cleaned with a polishing paste. Subsequently, they were isolated and restored with one of the materials tested. Immediately following their placement and after 6, 12, 24, and 36 months, the restorations are evaluated with direct clinical methods and the quality of the margins are examined with the help of SEMs.</td>
<td>All restorations have been placed and were examined after 6 months. A corresponding publication is being prepared.</td>
</tr>
<tr>
<td>Prof. R.D. Perry/ Prof. G. Kugel Department of Restorative Dentistry Tufts University, Boston, USA</td>
<td>Evaluation of the clinical performance of Compoglass in Class V restorations</td>
<td>The cavities are prepared without mechanical retention. A total of 63 restorations are placed. The teeth are evaluated according to clinical parameters after 6, 12, 24, and 36 months. In addition, close-up colour photographs and X-rays will be used to conduct indirect evaluations.</td>
<td>Initially, 100% of the restorations were rated A with regard to all criteria. The 6-month examination was already conducted on 19 restorations. All of them scored A ratings.</td>
</tr>
<tr>
<td>Dr. A. Abdalla Dr. H. Alhadainy Dr. F. Garcia-Godoy, Tanta Egypt and Department of Pediatric and Restorative Dentistry University of Texas, San Antonio, USA</td>
<td>Clinical investigation on glass ionomers (Fuji II LC and Vitremer) and compomers (Dyract and Compoglass) for the restoration of carious Class V defects</td>
<td>30 Class V cavities each were restored with 4 different materials. After 1 and 2 years, the restorations were evaluated according to USPHS criteria.</td>
<td>After 1 year, the shade match of Vitremer was significantly weaker than that of the other materials tested. After 2 years, the compomers demonstrated clearly better results than Fuji II LC, which was rated higher than Vitremer. Abdalla et al., 1997</td>
</tr>
</tbody>
</table>
5.2.2 Deciduous Teeth

<table>
<thead>
<tr>
<th>Head of Study</th>
<th>Subject</th>
<th>Experimental</th>
<th>Status/Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. A. Trummler
Director of the
School Dental
Service of the City of
St. Gallen
Switzerland</td>
<td>Clinical evaluation of Compoglass as a restorative material for deciduous teeth.</td>
<td>103 Compoglass restorations were placed in 64 patients and evaluated over a period of 2 years.</td>
<td>Initially, all restorations were rated A (A=good; B = clinically acceptable; C=unacceptable). One hundred restorations were examined after 12 months. 97 % were rated A and 3 % B. The shade was considered as good in all cases. Neither postoperative sensitivity nor secondary caries were noted. After 24 months, 93 restorations were examined (94.6% A, 5.4 % B / shade 99% A, 1% B / postoperative sensitivity 0% / secondary caries 0%).</td>
</tr>
<tr>
<td>Prof. F. Garcia-Godoy
Department of
Pediatric Dentistry and Restorative Dentistry
University of Texas, San Antonio, USA</td>
<td>Clinical investigation of Compoglass as a restorative for Class I and II cavities in primary molars.</td>
<td>Sixty restorations were inserted in deciduous molars. The teeth are evaluated after 6, 12, 18, and 24 months according to clinical parameters (USPHS). In addition, close-up colour photographs and impressions will be made for the indirect evaluation of the restorations.</td>
<td>After 6 months, the restorations were rated perfect (marginal quality (100% A), discolouration (100% A), anatomic shape (100% A), shade match 100% A). After 12 months, only the ratings for marginal quality (98% A) and discolouration (98% A) were slightly different. Neither postoperative sensitivity nor secondary caries were noted.</td>
</tr>
</tbody>
</table>
5.2.3 Long-Term Temporaries

<table>
<thead>
<tr>
<th>Head of Study</th>
<th>Subject</th>
<th>Experimental</th>
<th>Status/Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. E. Reich/ A. Zamani, ZA Department for Periodontology and Operative Dentistry University of Saarland, Homburg, Saar, Germany</td>
<td>Clinical evaluation of Compoglass, with and without the acid etch technique, in stress bearing occlusal Class I and II cavities</td>
<td>Patients with at least two similar cavities (Class I or II) were selected to participate in the study. In general, the cavities were prepared according to the adhesive technique. One cavity for each patient was restored with Compoglass, according to the Instructions for Use and without using the acid etch technique. In 20 patients, the second cavity was restored with a comparable material (Dyract) and in 20 patients with Compoglass using the acid etch technique. The teeth will be evaluated according to clinical parameters after 6, 12, 18, and 24 months. In addition, close-up colour photographs will be taken. Impressions will be made of some of the restored teeth to determine abrasion.</td>
<td>After 6 months, the restorations were examined according to modified Ryge criteria. All restorations were functional. Neither discolouration of the restorations, nor secondary caries were noted. After 6 months, 75% of the Dyract restorations and 73% of the Compoglass restoration showed slight negative steps, but no marginal gaps. When seated with acid etching, Compoglass restorations did not demonstrate any changes of marginal quality. 33% of the Dyract restorations and 7% of the Compoglass restorations evidenced marginal discolouration after 6 months. Restorations seated with acid etching did not show any marginal discolouration (Balz et al., 1997).</td>
</tr>
</tbody>
</table>
6. **Biocompatibility**

Compoglass F consists of the same component as the existing Compoglass. Only the ratio of the components has been optimized. Furthermore, the fluorosilicate glass was finer ground. Toxicological data are available for the individual components. Given the extremely similar composition, the toxicological data of Compoglass may be used for the toxicological evaluation of Compoglass F. Additionally, a cytotoxicity test was conducted on Compoglass F.

The following examinations are necessary for evaluating the biocompatibility of dental materials:

1. Acute oral risk: The patient accidentally swallows the entire amount of adhesive and restorative material
2. Local tolerance with surrounding tissue that comes in contact with the material
3. Possible sensitizing reactions
4. Mutagenic potential of eluted low-molecular components
5. Cytotoxicity: Damage to cultivated cells

6.1 **Acute Oral Risk**

Acute oral toxicity is established from the relationship between dose and effect, tested on rodents. The measure for the toxic effect was established as the lethal dose (LD50 value).

The following LD50 values can be calculated from the experimental data:

- Compoglass: > 5000 mg / kg
- Syntac Single-Component: > 5000 mg / kg

Acute toxicological risk of Compoglass and Syntac Single Component can thus be virtually excluded.

6.2 **Histology**

Local tolerance with surrounding tissue was tested on monkeys. The restorative was placed in Class V cavities using the adhesive technique. The effect on vital pulp tissue was examined. Infections or inflammations were not observed at any time (Tarim et al., 1996, 1997).

This study proves that Compoglass, used together with Syntac Single Component, does not harm the pulp. Rather Compoglass effectively protects the pulp against bacteria and inflammation.

6.3 **Sensitization**

Sensitization means that heightened sensitivity or allergic reactions to the chemical substance are induced. The sensitizing potential of a chemical substance was tested on the skin of albino guinea pigs.

No allergic reactions toward Compoglass were observed under the given test conditions. Compoglass can thus be considered non-sensitizing.
6.4 Mutagenicity

Mutagenicity of a substance can be easily and reliably determined with a bacterial test (Ames Test, Ames et al., 1975).

No mutation of Salmonella typhimurium could be determined in an Ames Test conducted under the selected experimental conditions. In these tests, Compoglass was demonstrated to be non-mutagenic.

6.5 Cytotoxicity

The toxicity of eluted low-molecular substances can be determined with cultivated cells of mammals.

No cytotoxicity was determined for Compoglass F.
7. Literature

Ames BN, Mccann J, Yamasaki E
Methods for detecting carcinogens and mutagens with the Salmonella / mammalian-microsome mutagenicity test
Mutation Research 31 (1975), 347-364

De Gee AJ, Pallav P, Davidson CL
Effect of abrasion medium on wear of stress-bearing composites and amalgam in vitro

Finger W, Thiemann J
Correlation between in vitro and in vivo wear of posterior restorative materials
Dent Mat 3 (1987) 280-286

Janda R
Der Stand der Entwicklung auf dem Gebiet der Zahnfüllungskunststoffe (I)
Quintessenz 39 (1988), 1067-1073

Janda R
Der Stand der Entwicklung auf dem Gebiet der Zahnfüllungskunststoffe (II)
Quintessenz 39 (1988), 1243-1253

Janda R
Der Stand der Entwicklung auf dem Gebiet der Zahnfüllungskunststoffe (III)
Quintessenz 39 (1988), 1393-1396
Knobloch L, Kerby, R E

Veröffentlichungen zu Compoglass:

Restoration of class 5 tooth defects - state-of-art 96
CRA Newsletter 20 (1996) 1-2

Compomer easy to use and well accepted
CRA Newsletter 10 (1996) 4

Compomers
The Dental Advisor 13 (1996) 7

Klinische In-vivo-Untersuchung mit neuem Compomer Compoglass: Erste Resultate fallen zur vollen Zufriedenheit aus
DZW 23 (1995) 10

Class V restorative materials
Reality Now 76 (1996) 1-3

Abdalla AI, Alhadainy HA, Garcia-Godoy F
Clinical evaluation of glass ionomers and compomers in Class V carious lesion

Physical properties of light-cure and conventional glass ionomer cements
J Dent Res 73 (1994), IADR Abstract Nr. 938

Krejci I
Standortbestimmung in der konservierenden Zahnmedizin
Schweiz Monatsschr Zahnmed 103 (1993), 614-624

Peters TCRB, Roeters JJM, Frankenmolen FWA
Clinical evaluation of Dyract in primary molars: 1-year results

Torabzadeh H, Aboush YE , Lee AR
Comparative assessment of long-term fluoride release from light-curing glass-ionomer cements

Watts DC, Bertenshaw BW, Jugdev JS
pH and time-dependence of surface degradation in a compomer biomaterial

Attin T, Kielbassa AM, Plogmann S, Hellwig E
Fluoridfreisetzung aus Kompomeren im sauren und neutralen Milieu
Dtsch Zahnärztl Z 11 (1996) 675-678

Ausiello P, De Gee AJ, Rengo S, Davidson CL
Cusp fracture resistance of endodontically treated adhesively restored upper premolars

Balz M, Zamani A, Reich E
Okklusionstragende Füllungen der Klasse I und II mit Kompomeren
DGZ (1997) 166-167

Bauer CM, Kunzelmann KH, Hickel R
Siliko-Phosphat- und Glasionomerzemente - eine Amalgamalternative?
DGZ 1 (1995) 56

Bauer CM, Kunzelmann KH, Hickel R
Silikophsfat- und Glasionomerzemente - eine Amalgamalternative?
Dtsch Zahnärztl Z 51 (1996) 339-341
Blunck U

Dentinhaftmittel und Kompomere
Quintessenz 47 (1996) 19-35

Blunck U

Hinweise zur praktischen Anwendung von Kompomeren und Kompositmaterialien in Kombination mit Dentinhaftmitteln
Quintessenz 47 (1996) 189-201

Bonte E, Lasfargues JJ, Goldberg M

The rat's first molar as an in vivo model for biomaterial testing

Buchalla W, Attin T, Hellwig E
Einfluss der Schmelzätztechnik auf die Haftung von Kompomer-Füllungsmaterialien
Dtsch Zahnärztl Z 52 (1996) 463-466

Calabrese M, Graiff L, Brait D, Mason PN
Compomer restorations: effect of acid etch on microleakage

Chain JB, Chain MC, Lacefield WR, Russell CM
Quantitative microleakage of compomers and a tri-cure glass ionomer cement

Chain JB, Chain MC, Lacefield WR, Russell CM
Dentin bond strengths of compomers and a tri-cure glass ionomer cement

Christensen GJ
Compomers vs. resin-reinforced glass ionomers

De Gee AJ, Feilzer AJ, Werner A, Davidson CL
Wear performance of polyacid modified resin composites
J Dent Res 76 (1997) 74

Dietrich T, Lösche AC, Lösche GM, Roulet JF
Marginal adaptation of class II sandwich restorations using different light cured GIC’s and compomers

Microhardness of four light-cured glass ionomer restorative materials
J Dent Res 76 (1997) 1135
Fischer J, Marx R

Mechanical strength and durability of some newly developed compomers
DGZPW 0 (1996) 92
Frankenberger R, Krämer N

Die Füllungstherapie im Milchgebiss
Phillip J 14 (1997) 169-183

Frankenberger R, Krämer N, Sindel J
Haftfestigkeit und Zuverlässigkeit der Verbindung Dentin-Komposite und Dentin-Kompomer
Dtsch Zahnärztl Z 51 (1996) 556-560

Frey D, Soglowek W
Correlation of abrasion resistance and mechanical properties of compomers
J Dent Res 76 (1997) 75

Friedl KH, Schmalz G, Hiller KA, Gottlieb A
Bond strength of resin modified glass ionomer cements and compomers
J Dent Res 76 (1997) 313

Fröhlich M, Schneider H, Merte K
Oberflächeninteraktionen von Dentin und Adhesiv
Dtsch Zahnärztl Z 51 (1996) 173-176

Garcia-Godoy F, Rodriguez M, Barberia E
Dentin bond strength of fluoride-releasing materials

Garcia-Godoy F, Rodriguez M, Barberia E
Dentin bond strength of fluoride-releasing materials

Grandgenett C, Donly KJ
Caries inhibition of resin-modified glass ionomer cement and compomers

Grant D, Grant G, Suzuki S, Nimer S, Thornton J, Chambliss T, Bradley EL, Cox CF
In vitro evaluation of antagonistic wear of compomere systems against human enamel

Hellwig E
Fluoridfreisetzung von Kompomeren und Glasionomerzemen: Im sauren Milieu geben Kompomere mehr Fluoride ab
DGZPW 32 (1996) 12

Hickel R, Kremers L, Haffner C
Kompomere
Quintessenz 47 (1996) 1581-1589
Hotz P, Gujer J, Stassinakis A
Influence of specimen shape, setting time
and glassionomer typ on the long-term
fluorid release
J Dent Res 75 (1996) 70

Hugenberg A
Compoglass - der Amalgamersatz im
Milchgebiss?
DZW 40 (1995) 13

Jakob M, Haller B, Hofmann N, Klaiber B
Long-term Extrusion Shear Bond Strength
of Eight Dentin Adhesives
Jodwowska E, Traciki J
Shear bond strength of compomers on
dentin and enamel
J Dent Res 76 (1997) 1146

Johnson ND, Osborne DS, Aguietseva S, Lynch E
Six month fluoride release from seven new
restorative materials

Jumlongras D, White GE
Bond strength of composite resin and
compomers in primary and permanent
teeth

Kerby RE, Knoblauch L, Berlin J, Lee J
Fracture toughness of glass-ionomer and
resin-based restorative materials

Kielbassa AM, Attin T, Wrbas KTH, Dornfeld T,
Hellige I
Untersuchungen zur zeitabhängigen
Haftung moderner Füllungswerkstoffe auf
perfundiertem Milchzahndentin
Dtsch Zahnärztl Z 52 (1997) 119-123

Koukopoulou E, Yaman P, Razzoog ME, Efstratopoulou O
Color stability of compomers

Krämer N, Pelka M, Kautetzky P, Petschelt A
Abrasionbeständigkeit von Kompomeren
und stopfbaren Glasionomerzementen
Dtsch Zahnärztl Z 52 (1997) 186-189

Krejci I, Lutz F, Oddera M
Aktueller Stand der Kompomere
DFZ 9 (1995) 52-57

Lagouvardos P, Apostolopoulos C, Oulis C
Bend strength of repaired hybrid Glass-ionomers

Lang H, Schwan R, Nolden R
Das Verhalten von Klasse-V-
Restaurationen unter Belastung
Dtsch Zahnärztl Z 51 (1996) 613-616

Leach H, Aboush YE
The adhesion of Compomers to enamel and
dentine
J Dent Res 75 (1996) 1130

Leyhausen G, Abtahi M, Karbakhsh M,
Sapotnic A, Geurtsen W
The biocompatibility of various resin-
modified glass-ionomer cements
1st European Union Conference on Glass-
onomers 1 (1996) 41

Lösche AC, Lösche GM, Roulet JF
Lichthärtende Glasionomerzemente und
Kompomere zur Versorgung ausgedehnter
Klasse-III-Kavitäten
Dtsch Zahnärztl Z 51 (1996) 683-686

Lutz F
State of the art of tooth-colored
restoratives
Oper Dent 21 (1996) 237-248

Manz R
Sicherung eines umfassenden
Behandlungsplans durch ästhetisch
ansprechende Interimsversorgung
DZW-Special 1 (1996) 36

McSweeney T, Perry R, Aboushala A, Kugel G
Different liners in class II composite resin
restorations: microleakage study

Medioni E, Sellam S, Rouviere C, Bolla M
A confocal microscopy evaluation of three
polishing agents for hybrid glass ionomer
cement

Meyer JM, Cattani-Lorente MA
"Compomers": Between glass ionomer
cements and composites
1st European Union Conference on Glass-
onomers 1 (1996) 32

Moll KH, Haller B, Hofmann N, Klaiber B
Phosphoric acid etching and enamel bond
of composite/glass ionomer hybrids
J Dent Res 75 (1996) 171

Nunez A, Burgess JO, Chan DCN
Fluoride release and uptake of six fluoride releasing restorative materials

Ochsner C, Covey DA, Ewoldsen N, Beatty MW
Dental cements/resins containing fluoroaluminosilicate glass: sliding wear and friction coefficients

Osorio R, Rosales JI, Toledano M, Torre Dela FJ, Garcia-Godoy F
Water sorption of resins and glass ionomers

Peutzfeldt A, Garcia-Godoy F, Asmussen E
Surface hardness and wear of glass ionomers and compomers
Am J Dent 10 (1997) 15-17

Peutzfeldt A
Compomeres and glass ionomers: bond strength to dentin and mechanical properties

Rasmussen TE, Froerer JJ, Hollis RA, Christensen RP
Long term fluoride release from compomers and flowable resins

Reich E, Jaeger C, Netuschil L
Release and uptake of fluoride by restorative materials
J Dent Res 76 (1997) 1099

Salama HS
The effect of micro abrasion on surface topography of enamel and esthetic restorative materials

Salama HS
The influence of the depth of substrate dentin surface and thickness of the current restorative samples on.

Salama HS, Kunzelmann KH, Hickel R
Shear bond strength of poly acid modified composite (compomer) to dentin

Schiffner U, Knop B
Ultraschallaktivierte Kompomere zur Fissurenversiegelung?
Dtsch Zahnärztl Z 51 (1996) 687-689

Schneider BT, Watanabe LG, Baumann MA, Marshall GW
Influence of storage media on microleakage in one-bottle bonding systems

Schütte P
Compoglass zur Versorgung von Zahnhalsskavitäten
ZWR 104 (1995) 0

Shaw AJ, McCabe JF
Fluoride release from glass-ionomer and compomer restorative materials
Sindel J, Krämer N, Petschelt A
Cyclic fatigue of dental glass ionomer cements and compomers

Stassonakis A, Gujer J, Hugo B, Hotz P
Fluoridfreisetzung bei konventionellen und modifizierten Glastonern in vitro
Acta Med Dent Helv 1 (1996) 244-249

Stockleben C
Postamalgam - neue Möglichkeiten in der Füllungstherapie
Swiss Dent 17 (1996) 5-7

Sunoli Periu L
Compoglass? Una nueva generacion de materiales?
Informe Dental 1 (1995) 1-3

Tarim B, Suzuki SH, Suzuki S, Hafez AA, Cox CF
Histological Pulp response of two compomer systems in class V cavities

Toledano M, Torre Dela FJ, Rosales JI, Osorio R, Garcia-Godoy F
Flexural strength evaluation of selected restorative materials
J Dent Res 76 (1997) 422

Vichi A, Ferrari M, Davidson CL
In vivo microleakage of resin modified glass ionomer cements
J Dent Res 76 (1997) 1146

Vijayaraghavan TV, Pak JS
Shear bond strength at dentin-cement or adhesive interface using "push out" test mode

Warren DP, Chan JT, Powers JM
APF affects surface roughness of hybrid ionomers, compomer and composites
This documentation contains a survey of internal and external scientific data ("Information"). The documentation and Information have been prepared exclusively for use in-house by Ivoclar Vivadent and for external Ivoclar Vivadent partners. They are not intended to be used for any other purpose. While we believe the Information is current, we have not reviewed all of the Information, and we cannot and do not guarantee its accuracy, truthfulness, or reliability. We will not be liable for use of or reliance on any of the Information, even if we have been advised to the contrary. In particular, use of the Information is at your sole risk. It is provided "as-is", "as available" and without any warranty express or implied, including (without limitation) of merchantability or fitness for a particular purpose.

The Information has been provided without cost to you and in no event will we or anyone associated with us be liable to you or any other person for any incidental, direct, indirect, consequential, special, or punitive damage (including, but not limited to, damage for lost data, loss of use, or any cost to procure substitute information) arising out of your or another’s use of or inability to use the Information even if we or our agents know of the possibility of such damage.

Ivoclar Vivadent AG
Research & Development
Scientific Service
Bendererstrasse 2
FL - 9494 Schaan
Liechtenstein

Contents: Dr. Christoph Appert
Issued: January 1998