Telio® CAD
Abutment Solutions

Instructions for Use
Table of Contents

3 Telio® CAD solutions
4 Abutment Solutions

5 Product information
 Description
 Material
 Uses
 CAD/CAM partners

8 Fabricating a Telio® CAD hybrid abutment crown
 Treatment / fabrication process
 Shade – tooth shade and abutment shade
 Preparation for the CAD/CAM process
 Layer thicknesses
 Block selection
 Selecting the Viteo Base
 Finishing

13 Completing the Telio® CAD structure
 Polishing technique chairside
 Polishing technique labside

14 Cementation of the titanium bonding base / Telio® CAD structure

21 Seating and aftercare
 Intraoral preparation
 Seating the hybrid abutment crown

23 Designing the emergence profile
 Chairside
 Labside

25 General information
 Care notes – Implant care
 Frequently Asked Questions

Symbols in the Instructions for Use

- Important
- Information
- Tips & Tricks
Telio® CAD solutions

Telio® CAD stands for individuality. Depending on the indication, users may select from two approaches. This ensures maximum flexibility in the digital work process.

Telio® CAD Abutment Solutions

Individual, CAD/CAM-fabricated implant-supported hybrid restorations for individual, temporary single-tooth reconstructions.

Telio® CAD Monolithic Solutions

Efficient fabrication of long-term temporaries by means of the CAD/CAM technique.

These Instructions for Use describe the fabrication of Telio CAD Abutment Solutions. There are separate Instructions for Use available for Telio CAD Monolithic Solutions.
Abutment Solutions

Together with Ivoclar Vivadent’s innovative restorative materials, the CAD/CAM technique facilitates the planning and fabrication of implant-supported restorations – from temporary to permanent implant prosthetics.

The following products are available for the fabrication of Abutment Solutions:

- Telio® CAD Abutment blocks
- IPS e.max® CAD Abutment blocks
- Multilink® Hybrid Abutment
- Viteo® Base
Telio® CAD Abutment Solutions

Product information

Description

Telio® CAD A16 are CAD/CAM-fabricated implant-supported hybrid abutment crowns for individual, temporary single-tooth reconstructions. The material consists of a cross-linked polymer block (PMMA), enabling the fabrication of individual, monolithic hybrid abutment crowns which are directly cemented to a titanium bonding base. Shape, esthetics and emergence profile can be easily designed and adjusted any time. Telio CAD A16 thus represents the basis for the subsequent permanent restorations with IPS e.max® CAD Abutment Solutions and IPS e.max Press Abutment Solutions.

Hybrid abutment crown

Hybrid abutment crowns are characterized by combining abutment and monolithic crown in one piece. This is an efficient two-in-one solution made of PMMA, which is directly cemented to a titanium bonding base. Shape, esthetics and emergence profile can be easily designed and adjusted any time. For cases with immediate stress-bearing, a CAD/CAM-milled instant temporary can be fabricated. For this purpose, Telio CAD convinces users with its usual esthetic properties and sufficient strength, durability and efficiency.

The monolithically milled hybrid abutment crown is extraorally cemented to the titanium bonding base by means of Multilink Hybrid Abutment HO 0. Then, the restoration is screwed onto the implant – in one piece. Finally, the screw channel is sealed with a composite (e.g. Tetric EvoCeram®) or a light-curing temporary restorative material (e.g. Telio CS Inlay / Onlay).

Ideally coordinated – Multilink® Hybrid Abutment HO 0

The auto-curing Multilink Hybrid Abutment luting composite together with SR Connect and Monobond® Plus are used for the cementation of Telio CAD on adhesive bases made of titanium / titanium alloys. This allows

– reliable adhesion due to high adhesion values;
– easy handling due to the convenient automix syringe.

Material

Telio® CAD

Telio CAD are cross-linked PMMA blocks for the fabrication of long-term temporaries by means of the CAD/CAM technique. As a result of the industrial polymerization process, the blocks feature a high material homogeneity. Polymerization shrinkage or inhibition layers no longer have to be taken into consideration. Given the CAD/CAM fabrication, the temporary can be easily reproduced at any time. Stains and/or layering materials can be used to apply final esthetic optimizations.

Physical properties

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specifications</th>
<th>Typical average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural strength</td>
<td>[MPa]</td>
<td>≥ 100</td>
</tr>
<tr>
<td>Flexural modulus</td>
<td>[MPa]</td>
<td>≥ 2800</td>
</tr>
<tr>
<td>Ball indentation hardness</td>
<td>[MPa]</td>
<td>≥ 140</td>
</tr>
<tr>
<td>Water absorption</td>
<td>[µg/mm³]</td>
<td>≤ 40</td>
</tr>
<tr>
<td>Solubility</td>
<td>[µg/mm³]</td>
<td>≤ 7.5</td>
</tr>
</tbody>
</table>

1 EN ISO 10477:2004
2 determined by bending tests
3 internal method
Titanium bonding base

Titanium bonding bases are used for the fabrication of Telio CAD Abutment Solutions. The suitable titanium bonding bases are selected in accordance with the CAD/CAM system used. Please observe the instructions for use and processing of the respective manufacturer.

Viteo Base (Ivoclar Vivadent AG)

The Viteo Base with blasted bonding surface and internal anti-rotation lock is suitable for press and CAD/CAM-produced restoration materials. The Viteo Base is available in two platform sizes and is compatible with various implant systems.

Uses

Indications

Telio CAD Abutment Solutions is indicated for temporary hybrid abutment crowns (up to 12 months). The system comprises three parts:

– Telio CAD structure
– Titanium bonding base
– CAD/CAM software

The Telio CAD structure is bonded to a titanium bonding base and then inserted together with the corresponding implant.

An overview of the compatible implant systems, CAD/CAM systems and titanium bonding bases can be found at www.ivoclarvivadent.com.

Contraindications

– Use for permanent restorations
– Bruxism
– Failure to observe the requirements stipulated by the implant manufacturer for using the selected implant type (diameter and length of the implant must be approved for the respective position in the jaw by the implant manufacturer)
– Failure to observe the permissible maximum and minimum Telio CAD layer thicknesses
– Use of a luting composite other than Multilink Hybrid Abutment HO 0 for the cementation of the Telio CAD structure to the titanium bonding base
– **Intraoral** cementation of the Telio CAD structure to the titanium bonding base
– All uses not stated as indications are contraindicated.

Important processing restrictions

– Processing of the blocks with non-authorized CAD/CAM systems.
– Failure to observe the manufacturer’s instructions regarding the processing of the titanium bonding base.

Side effects

If the patient is known to be allergic to any of the components, Telio CAD and the other materials necessary for the fabrication should not be used.

Composition

Telio® CAD Abutment Solutions – Product information

- **Telio CAD**
 Components: Poly(methyl methacrylate) (PMMA), pigments

- **Multilink Hybrid Abutment HO 0**
 Components: Dimethacrylate, HEMA as well as fillers (barium glass, ytterbium trifluoride, spheroid mixed oxides and titanium dioxide)

- **SR Connect**
 Components: Methyl methacrylate, polymethyl methacrylate, dimethacrylates and initiators

Warnings
- Do not inhale grinding dust.
- SR Connect contains methyl methacrylate (MMA). MMA is highly flammable. Therefore, keep away from sources of ignition and do not smoke. MMA is an irritant and is irritating to eyes, respiratory organs and skin. Do not inhale vapours.
- The safety notes on the individual primary packaging and labels have to be observed.
- Protect from sunlight.

CAD/CAM partners

Telio CAD has to be processed with an authorized CAD/CAM system. For questions regarding the different CAD/CAM systems, please contact the respective cooperation partners. Further information is available at

Telio® CAD Abutment Solutions

Fabricating a Telio® CAD hybrid abutment crown

Working steps

1. Implantation, healing phase
2. Shade determination, impression-taking
3. CAD design
4. CAM
5. Hybrid abutment crown
6. Cementation of the titanium bonding base / Telio CAD structure
7. Screwing in the hybrid abutment crown
8. Sealing the screw channel
9. Final check
10. Aftercare

Optional

- Clinical try-in
- Characterization, adjustment

Ivoclar Vivadent products

- Cervitec® Plus, Cervitec® Liquid
- OptraGate®, Virtual®
- Telio® CAD
- SR Nexco®, Tetric EvoCeram®, Tetric EvoFlow®
- Viteo Base, Monobond® Plus, SR Connect, Multilink® Hybrid Abutment HO 0
- Tetric EvoCeram®, Tetric EvoFlow®, Telio® CS Inlay
- Implant Care
Shade – tooth shade and abutment shade

For the Telio CAD hybrid abutment crown, the desired tooth shade results from the
– shade of the Telio CAD A16 block;
– the shade of Multilink Hybrid Abutment HO 0.

Preparation for the CAD/CAM process

Scanning

For the fabrication of Telio CAD Abutment Solutions, the clinical situation is digitalized either by a direct intraoral scan or an indirect model scan, depending on the CAD/CAM system used. For notes regarding the scan, please observe the manufacturer’s instructions of the CAD/CAM system.

Selecting a titanium bonding base

The required titanium bonding base is selected depending on the inserted implant and the CAD/CAM system used.
Layer thicknesses

Observing the geometry requirements of the Telio CAD structure is the key to success for a durable restoration. The more attention given to the design, the better the final results and the clinical success will turn out to be.

The following basic guidelines have to be observed:

Hybrid abutment crown

![Diagram of hybrid abutment crown with dimensions]

- **Minimum thicknesses**
 - occlusal: min. 1.5 mm
 - circular: min. 0.8 mm
 - Telio CAD A16 in the transition area to the titanium bonding base rim: min. 0.5 mm

 - The notes of the implant manufacturer regarding the maximum height of the hybrid abutment crown must be observed.
 - In the transition area to the titanium bonding base rim, the minimum thickness is 0.5 mm, which has to be continuously increased to 0.8 mm.

Block selection

The block is selected in accordance with the desired tooth shade and the selected titanium bonding base. Available are blocks with prefabricated S and L, and SD and MD interfaces, each coordinated with the corresponding titanium bonding bases from different manufacturers.
Finishing

Conventional cross-cut tungsten carbide burs are suitable for finishing and adjusting the Telio CAD structure. During finishing, make sure that the minimum layer thicknesses are observed. The milled Telio CAD structure is separated from the block by means of a fine cross-cut bur or a diamond separating disc.

Checking the fit of the Telio CAD structure on the titanium bonding base

Carefully place the CAD structure on the titanium bonding base and check the fit. Observe the position of the rotation lock.

Important:
- Do not finish the shoulder of the Telio CAD structure to prevent negatively affecting the titanium bonding base.
- Finish the emergence profile if required, taking the fit to the gingiva and the minimum thickness into account.

Finishing the outer surface of the Telio CAD structure (hybrid abutment crown)
- Smooth out the attachment point to the block with fine tungsten carbide burs taking the shape of the emergence profile and the proximal contacts into account.
- Check the proximal, occlusal and basal contacts.
- Design surface textures.

Clean the Telio CAD structure in an ultrasonic bath and/or blast with the steam jet before further processing.
Do not finish the shoulder to the titanium bonding base.

Be careful when finishing the emergence profile to prevent affecting the fit to the gingiva.

Smooth out the attachment point to the block taking the shape of the emergence profile and the crown margin into account.

Adjust the surface texture where desired.
Polishing technique chairside

Astropol®
Step 1: Finishing with Astropol F (grey): With the Astropol F finisher, excess is removed and a smooth surface is achieved.
Step 2: Polishing with Astropol P (green): Polishing with Astropol P results in a smooth restoration surface.
Step 3: High-gloss polishing with Astropol HP (dusky pink): Do not apply pressure. The restoration surfaces are finished and polished using medium contact pressure.

Note:
Finishing and polishing is carried out using water spray for cooling and to remove the resulting polishing residue. If excess has already been removed with a fine-grit diamond grinding instrument or if the surfaces of the restoration are rather smooth, the first step (Astropol F) can be forgone.
Recommended speed: 7,500–10,000 rpm.

OptraPol®
As an alternative, the OptraPol one-step polishing system can be used. The following instructions should be observed:
– Speed: 5,000–8,000 rpm
– Only use in conjunction with copious water spray.
The restoration is polished to a high gloss in only one polishing step and using medium contact pressure.

Polishing technique labside
Prepolishing is performed with rubber polishers and silicone wheels with various abrasive levels from rough to fine. A high gloss is achieved with a goat hair brush, cotton or leather buffing wheel as well as SR® Universal polishing paste.
Careful preparation of the bonding surfaces is a prerequisite for optimum adhesive cementation of the Telio CAD structure to the titanium bonding base. The following paragraphs outline the required procedures.

Required materials:
- SR Connect
- Monobond® Plus
- Multilink® Hybrid Abutment HO 0
- Liquid Strip

<table>
<thead>
<tr>
<th></th>
<th>Telio CAD structure</th>
<th>Titanium bonding base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blasting</td>
<td></td>
<td>Observe manufacturer’s instructions.</td>
</tr>
<tr>
<td>Conditioning</td>
<td>Apply SR Connect on the bonding surface to the titanium bonding base, allow to react for 30 s and polymerize for 40 s with a curing light (e.g. Bluephase® Style).</td>
<td>–</td>
</tr>
<tr>
<td>Preparation for cementation</td>
<td>–</td>
<td>Wet bonding surface with Monobond Plus for 60 s.</td>
</tr>
<tr>
<td>Cementation</td>
<td>Multilink® Hybrid Abutment HO 0</td>
<td>Liquid Strip</td>
</tr>
<tr>
<td>Covering the cementation joint</td>
<td>Liquid Strip</td>
<td>Liquid Strip</td>
</tr>
<tr>
<td>Curing</td>
<td>Auto-polymerization: 7 min</td>
<td>Auto-polymerization: 7 min</td>
</tr>
<tr>
<td>Polishing the cementation joint</td>
<td>Customary polishers for resin materials and polishing paste</td>
<td>Customary polishers for resin materials and polishing paste</td>
</tr>
</tbody>
</table>

Preparing the titanium bonding base

The following procedure should be observed when preparing the titanium bonding base for the cementation with the Telio CAD structure:
- Prepare the titanium bonding base according to the instructions of the manufacturer.
- Clean the titanium bonding base in an ultrasonic bath or with the steam jet and then dry with blown air.
- Screw the titanium bonding base onto a model analog.
- Place the Telio CAD structure on the titanium bonding base and mark the relative position of the components with a waterproof pen. This facilitates locating the correct position when the parts are assembled at a later stage.
- Do not blast or modify the emergence profile of the titanium bonding base in any way.
- **If the manufacturer recommends that the bonding surface of the titanium bonding base is blasted, the following procedure should be observed:**
 - Protect the emergence profile and the screw channel, e.g. by means of a silicone (Virtual® Extra Light Body Fast Set).
 - Carefully blast the bonding area according to the instructions of the manufacturer.
 - Remove silicone.
 - Clean the titanium bonding base in an ultrasonic bath or with the steam jet.
 - After the bonding surface has been cleaned, it must not be contaminated under any circumstances as this would impair the bond.
 - **Note:** Aggressive blasting negatively affects the anti-rotation lock. Blasting with max. 50 µm Al₂O₃ at 1–2 bar (15–29 psi) pressure is recommended.
 - Apply Monobond Plus on the cleaned bonding surface and allow it to react for 60 s. After the reaction time, dry the remaining residue with water and oil-free air.
 - Seal the screw channel with a foam pellet or wax. The bonding surface must not be contaminated in the process.
Preparing the TiBase (Sirona):

Screw the titanium bonding base onto a model analog. Mark the relative position to the structure with a waterproof pen.

The instructions of the implant manufacturer must be observed. Carefully blast the bonding surface with max. 50 µm and 1–2 bar (15–29 psi) pressure.

The instructions of the implant manufacturer must be observed. Protect the emergence profile and the screw channel, e.g. by means of a silicone (Virtual Extra Light Body Fast Set).

Remove silicone and subsequently clean in an ultrasonic bath or with the steam jet.

Apply Monobond Plus on the cleaned bonding surface and allow it to react for 60 s. After the reaction time, dry the remaining residue with water and oil-free air.

Seal the screw channel with a foam pellet or wax.
Preparation of the Viteo Base (Ivoclar Vivadent AG):

The bonding area of the Viteo Base has already been blasted.

- Screw the titanium bonding base onto a model analog. Mark the relative position to the structure with a waterproof pen.
- Apply Monobond Plus on the cleaned bonding surface and allow it to react for 60 s. After the reaction time, dry the remaining residue with water and oil-free air.
- Thoroughly clean the Viteo Base in an ultrasonic bath and subsequently with the steam jet and let it dry.
- Seal the screw channel with a foam pellet or wax.
Preparing the Telio® CAD structure

The following procedure must be observed when preparing the Telio CAD structure for cementation on the titanium bonding base:

– Do not blast the Telio CAD structure in preparation for the cementation.
– Clean the Telio CAD structure in an ultrasonic bath or with the steam jet and subsequently blow dry.
– After the bonding surface has been cleaned, it must not be contaminated under any circumstances as this would impair the bond.
– Thinly coat the bonding surface with SR Connect using a disposable brush and allow it to react for 30 s. Subsequently, polymerize with a curing light (e.g. Bluephase Style) for 40 s.

<table>
<thead>
<tr>
<th>Device</th>
<th>Bluephase® Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Ivoclar Vivadent AG</td>
</tr>
<tr>
<td>SR Connect</td>
<td>40 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lumamat 100</th>
<th>Spectramat</th>
<th>Labolight LV-III</th>
<th>Solidilite V</th>
<th>Visio Alfa</th>
<th>HiLite Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivoclar Vivadent</td>
<td>Ivoclar Vivadent</td>
<td>GC</td>
<td>Shofu</td>
<td>3M</td>
<td>Heraeus Kulzer</td>
</tr>
<tr>
<td>P2: 11 min</td>
<td>2 min</td>
<td>3 min</td>
<td>3 min</td>
<td>4 x 20 s</td>
<td>90 s</td>
</tr>
</tbody>
</table>

Status 2014

The SR Connect reaction time of 30 s must be observed: If SR Connect is applied as a conditioner for Telio CAD A16 for longer than that, the accuracy of fit may be compromised.

Do not disperse SR Connect!

- Do not blast the Telio CAD structure.
- Thinly apply SR Connect with a disposable brush. Do not disperse.
- Light cure for 40 s (e.g. with Bluephase® Style).
Cementation with Multilink® Hybrid Abutment

The following instructions must be observed in the cementation procedure:

– Lay out the cleaned and conditioned components (Telio CAD structure, titanium bonding base) for cementation.

– Carry out the subsequent cementation procedure quickly and without interruption. The working time of Multilink Hybrid Abutment HO 0 is approximately 2 min. at 23°C (± 1°C) or 73°F (± 1.8°F).

– As a general rule, attach a new mixing tip to the Multilink Hybrid Abutment HO 0 syringe prior to each use.

– Apply a thin layer of Multilink Hybrid Abutment HO 0 directly from the mixing tip to the bonding surface of the titanium bonding base and to the bonding surface of the Telio CAD structure.

– Leave the mixing tip on the Multilink Hybrid Abutment syringe until the next use. The remaining cement polymerizes in the tip and functions as a seal.

– Place the Telio CAD structure on the titanium bonding base in such a way that the position markings are aligned.

– Press the parts lightly and evenly together and check the correct relative position of the components (transition titanium bonding base / Telio CAD structure).

– Subsequently, tightly press the components together for 5 s.

– Carefully remove excess in the screw channel, e.g. with a microbrush or brush, using rotary movements.

– Apply glycerine gel (e.g. Liquid Strip) to the cementation joint to prevent the formation of an inhibition layer. Leave the gel on the cementation joint until polymerization is completed.

– Next, the composite cement auto-polymerizes completely within 7 min.

– Important: Do not move the components until Multilink Hybrid Abutment HO 0 has completely cured. Hold them in place using e.g. diamond-coated tweezers.

– After completed auto-polymerization, rinse off the glycerine gel with water or remove it with the steam jet.

– Cautiously polish the cementation joint with rubber polishers at low speed (< 5,000 rpm) to avoid overheating. Finally, polish the surface of the PMMA structure to a high gloss using polishing paste.

– Remove any remaining cement residue in the screw channel with suitable rotating instruments.

– Clean the restoration in an ultrasonic bath or with the steam jet.

Do not remove circular excess cement before curing has started, i.e. 2–3 min. after mixing. Use a suitable dental lab instrument (e.g. Le Cron) for this purpose. Hold the components in place using light pressure.
Apply a thin layer of Multilink Hybrid Abutment HO 0 directly from the mixing tip to the bonding surface of the titanium bonding base.

Place the Telio CAD structure on the titanium bonding base in such a way that the position markings are aligned. Press the parts lightly and evenly together and check the correct relative position of the components (transition titanium bonding base / Telio CAD structure).

Carefully remove excess in the screw channel, e.g. with a microbrush or brush, using rotary movements.

Important: Do not remove circular excess cement before curing has started, i.e. 2–3 minutes after mixing. Hold the components in place using light pressure.

Apply glycerine gel (e.g. Liquid Strip) to the cementation joint to prevent the formation of an inhibition layer.

The composite cement auto-polymerizes within 7 min. Important: Do not move the components until auto-polymerization is completed. Hold them in place during this time.

Subsequently, tightly press the components together for 5 s.
After completed auto-polymerization, rinse off the glycerine gel with water or remove it with the steam jet.

Remove any remaining cement residue in the screw channel with suitable rotating instruments. Do not damage the titanium bonding base.

Cautiously polish the cementation joint with rubber polishers at low speed (<5,000 rpm) to avoid overheating. Finally, polish the surface of the PMMA structure to a high gloss using polishing paste.

Telio CAD hybrid abutment crown after polishing and cementation.
Telio® CAD Abutment Solutions

Seating and aftercare

The local statutory provisions, treatment guidelines and hygiene standards that apply to general implant dentistry have to be considered.
For sterilization: Autoclave (moist heat), fractionated vacuum, 121°C (250°F), 20 min.
For disinfection: Dürr MD 520 with a reaction time of 5 min.

Intraoral preparation

Please observe the following procedure to prepare for the permanent cementation of the implant-supported restoration:
– Remove the gingiva former or healing cap.
– Clean the implant lumen.
– Check the periimplant tissue (emergence profile).

Seating the hybrid abutment crown

Seating the hybrid abutment crown
– Insert the hybrid abutment crown intraorally into the implant.
– Manually screw in the matching implant screw.
– Tighten the implant screw with a torque wrench (observe the instructions of the manufacturer).
– Check the screw channel for contamination / moisture and clean or dry with an air syringe, if necessary.
– Insert a sterile cotton or foam pellet or teflon tape into the screw channel.
– Seal the screw channel with composite resin or a light-curing temporary restorative (e.g. Telio CS Inlay / Onlay) if the wear period is intended to be shorter than 6 weeks. For a longer wear period, composite resin (e.g. Tetric EvoCeram, Tetric EvoFlow) has to be used.
– Polymerize with a curing light (e.g. Bluephase Style).
– Check the occlusion / articulation after polymerization and correct possible interfering spots with suitable fine-grit grinding instruments.
– Polish to a high gloss with silicone polishers (e.g. OptraPol / Astropol).
Insert the hybrid abutment crown intraorally into the implant.

Tighten the implant screw with a torque wrench (observe the instructions of the manufacturer).

Tighten the implant screw with a torque wrench (observe the instructions of the manufacturer).

After insertion of e.g. a teflon tape, seal the screw channel with a composite (e.g. Tetric EvoCeram) in the matching shade.

Polymerize with a curing light (e.g. Bluephase Style).

After polymerization, check the occlusion / articulation and correct possible rough spots with suitable finishers or fine diamonds.

Polish to a high gloss using silicone polishers (e.g. Astropol P, Astropol HP or Astrobrush).

Completed Telio CAD hybrid abutment crown.
Telio® CAD Abutment Solutions

Designing the emergence profile

Chairside

Blast the area to be supplemented (Al₂O₃, 80–100 µm grit, 1–2 bar / 15–29 psi) or roughen with a rough diamond bur and then wet extraorally using Telio Activator or SR Connect.

a) Use of Telio Activator

Wet the area to be supplemented extraorally with Telio Activator. To achieve an even distribution, agitate the Activator over the entire surface for 30 s using a brush. After that, allow it to react for another 30 to 60 s (total reaction time: 1 to 2 min). Now apply the Heliobond bonding agent, thinly disperse it with blown air and polymerize for ≥10 s (see Heliobond Instructions for Use).

Subsequently, apply Tetric EvoCeram in increments of max. 2 mm and adapt the material with a suitable instrument. Polymerize each layer with light (e.g. Bluephase Style) according to the instructions for use of the respective material. As an alternative, other light-curing Ivoclar Vivadent composites can be used.

Do not apply any material on the titanium bonding base as this may result in inaccuracies of fit.

b) Use of SR Connect

Apply a thin layer of SR Connect on the conditioned surface using a disposable brush, allow it to react for 2–3 min and subsequently polymerize.

Do not apply any material on the titanium bonding base.
Labside

<table>
<thead>
<tr>
<th>Labside adjustment of a temporary, chairside-modified emergence profile</th>
<th>Labside design of the emergence profile</th>
</tr>
</thead>
</table>
| - Screw the emergence profile modified by the clinician on a model analog.
- Take a silicone impression of the area of the emergence profile to be adjusted.
- Remove the material applied by the clinician. | Erase the area to be redesigned on the model either in the stone or on the gingival mask. |

With SR Nexco®

 Blast the area to be supplemented (Al₂O₃, 80–100 µm, 1–2 bar / 15–29 psi). Then clean with steam and dry with oil-free compressed air.

a) Use of Telio Activator

Condition with Telio Activator. For this purpose, distribute Telio Activator evenly but generously on the conditioned surface and allow it to react for at least 2 min to a maximum of 4 min. Then, apply SR Composiv according to the Instructions for Use, cure and subsequently layer the SR Nexco materials (see SR Nexco Instructions for Use).

b) Use of SR Connect

Apply a thin layer of SR Connect on the conditioned surface using a disposable brush, allow it to react for 2–3 min and subsequently polymerize. Then, layer the SR Nexco materials (see SR Nexco Instructions for Use).
Teleio® CAD Abutment Solutions

General information

Care notes – Implant Care

Implant Care comprises a coordinated product program for the professional care of patients during the different phases of an implant treatment and the aftercare throughout the rest of their lives. Products for professional cleaning and bacteria control contribute to ensuring the long-term quality of the implant-supported restorations. Structural elements, perimplant tissue, natural teeth, dentures, gingiva and mucous membrane obtain optimum treatment and care with regard to their function and esthetic appearance.
Frequently Asked Questions

Is it possible to fabricate an abutment crown only with Telio CAD without the use of a titanium bonding base?

No! For this indication, Telio CAD needs the support provided by the titanium bonding base. In addition, the titanium bonding base allows an optimum fit to the implant (industrial fabrication).

Which titanium bonding bases can be used for the fabrication of Telio CAD Abutment Solutions?

Only titanium bonding bases of authorized CAD/CAM systems may be used. Further information about the CAD/CAM cooperation systems is available at www.ivoclarvivadent.com.

Is it permissible to re-use the selected titanium bonding base?

No. When using Telio CAD Abutment Solutions and, when indicated, IPS e.max CAD Abutment Solutions, the titanium bonding base must not be re-used. As far as the preparations for permanently cementing the titanium bonding base are concerned, the instructions of the manufacturer have to be observed.

Is a hybrid abutment crown indicated in the anterior region?

This indication depends on the position and inclination of the implant. If the screw channel extends through the oral surface, a hybrid abutment crown may also be fabricated in the anterior region.

Can a clinical try-in be conducted with the Telio CAD Abutment Solutions?

Yes. A clinical try-in may be performed. The titanium bonding base and Telio CAD structure are temporarily joined in the laboratory by means of a silicone material, e.g. Virtual Extra Light Body Fast Set. This facilitates the intraoral handling during clinical try-in with the patient.

What material may be used for the cementation to the titanium bonding base?

Exclusively Multilink Hybrid Abutment HO 0 may be used for cementation. This ensures a high-quality bond. Given the high opacity of the composite cement, complete optical masking of the titanium bonding base is achieved and thus an excellent esthetic appearance ensured.

How is the screw channel of a hybrid abutment crown sealed after seating?

After the restoration has been intraorally screwed down on the implant, the screw channel is sealed with a temporary or permanent restorative composite.
Ivoclar Vivadent – worldwide

Ivoclar Vivadent AG
Bendererstrasse 2
9494 Schaan
Liechtenstein
Tel. +43 235 35 35
Fax +43 235 33 60
www.ivoclarvivadent.com

Ivoclar Vivadent SAS
B.P. 918
74410 Saint-Jorlaz
France
Tel. +33 4 50 88 64 00
Fax +33 4 50 68 91 52
www.ivoclarvivadent.fr

Ivoclar Vivadent GmbH
Dr. Adolf-Schneider-Str. 2
73479 Ellwangen, Jagst
Germany
Tel. +49 7961 889 0
Fax +49 7961 6326
www.ivoclarvivadent.de

Ivoclar Vivadent Marketing (India) Pvt. Ltd.
503/504 Raheja Plaza
15 B Shah Industrial Estate
Veera Desai Road, Andheri (West)
Mumbai, 400 053
India
Tel. +91 22 2673 0302
Fax +91 22 2673 0301
www.ivoclarvivadent.in

Ivoclar Vivadent Marketing Ltd.
The Icon
Horizon Broadway BSD
Block MS No. 1
Kecamatan Cisauk Kecamatan Sampora
15345 Tangerang Selatan – Banten
Indonesia
Tel. +62 21 3003 2932
Fax +62 21 3003 2934
www.ivoclarvivadent.com

Ivoclar Vivadent s.r.l.
Via del Lavoro, 47
40033 Casalecchio di Reno (BO)
Italy
Tel. +39 051 6113555
Fax +39 051 6113565
www.ivoclarvivadent.it

Ivoclar Vivadent K.K.
1-28-24-4F Hong Kong
Burkoy-ku
Tokyo 113-0033
Japan
Tel. +81 3 6903 3353
Fax +81 3 5844 3657
www.ivoclarvivadent.jp

Ivoclar Vivadent Ltd.
4F TAMIYA Bldg.
215 Baomoe-ro
Seoco-gu
Seoul, 06740
Republic of Korea
Tel. +82 2 536 0714
Fax +82 2 6499 0744
www.ivoclarvivadent.co.kr

Ivoclar Vivadent S.A. de C.V.
Calzada de Tlalpan 564,
Col Moderna, Del Benito Juárez
03810 México, D.F.
Mexico
Tel. +52 (55) 50 62 10 00
Fax +52 (55) 50 62 10 29
www.ivoclarvivadent.com.mx

Ivoclar Vivadent BV
De Fruitvijver 32
2132 NZ Hoofddorp
Netherlands
Tel. +31 23 529 3791
Fax +31 23 535 4564
www.ivoclarvivadent.de

Ivoclar Vivadent Ltd.
12 Omega St, Roerade
PO Box 303011 North Harbour
Auckland 0751
New Zealand
Tel. +64 9 914 9999
Fax +64 9 914 9990
www.ivoclarvivadent.co.nz

Ivoclar Vivadent Polska Sp. z o.o.
Al. Jana Pawła II 78
00-175 Warszawa
Poland
Tel. +48 22 635 5496
Fax +48 22 635 5469
www.ivoclarvivadent.pl

Ivoclar Vivadent LLC
Prospekt Andropova 18 korp. 6/6
office 10-06
115432 Moscow
Russia
Tel. +7 499 418 0300
Fax +7 499 418 0310
www.ivoclarvivadent.ru

Ivoclar Vivadent Marketing Ltd.
Qlaya Main St.
Silicon Building No.14, 2nd Floor
Office No. 204
P.O. Box 300146
Riyadh 11372
Saudi Arabia
Tel. +966 11 293 8345
Fax +966 11 293 8344
www.ivoclarvivadent.com

Ivoclar Vivadent S.L.U.
Carretera de Fuencarral nº24
Portal 1 – Planta Baja
28108-Alcorcon
(Madrid)
Spain
Tel. +34 91 375 78 20
Fax +34 91 375 78 38
www.ivoclarvivadent.es

Ivoclar Vivadent AB
Dalvagen 14
169 56 Solna
Sweden
Tel. +46 8 514 939 30
Fax +46 8 514 939 40
www.ivoclarvivadent.se

Ivoclar Vivadent Liaison Office
Tvetskie Mahallesi
Sakarik Sokak
Nisantas’i Plaza No:38/2
Kat5 Daire-24
34021 Sisli – Istanbul
Turkey
Tel. +90 212 343 0820
Fax +90 212 343 0842
www.ivoclarvivadent.com

Ivoclar Vivadent Limited
Compass Building
Feldspar Close
Warrens Business Park
Enderby
Leicester LE19 4SD
United Kingdom
Tel. +44 116 284 7880
Fax +44 116 284 7881
www.ivoclarvivadent.co.uk

Ivoclar Vivadent, Inc.
175 Martin Drive
Amherst, N.Y. 14228
USA
Tel. +1 800 533 6825
Fax +1 716 691 2285
www.ivoclarvivadent.us

Ivoclar Vivadent Marketing (India) Pvt. Ltd.
503/504 Raheja Plaza
Mississauga, Ontario
LST 2Y2
Canada
Tel. +1 905 670 8499
Fax +1 905 670 3102
www.ivoclarvivadent.us

Ivoclar Vivadent Shanghai Trading Co., Ltd.
2/F Building 1, 881 Wuding Road,
Jing An District
200040 Shanghai
China
Tel. +86 21 6302 1657
Fax +86 21 6176 0968
www.ivoclarvivadent.com

Ivoclar Vivadent Marketing Ltd.
Calle 134 No. 7B-83, Of. 520
Bogotá
Colombia
Tel. +57 1 627 3399
Fax +57 1 633 1663
www.ivoclarvivadent.co

Ivoclar Vivadent Marketing Ltd.
www.ivoclarvivadent.com

Date information prepared: 2018-11-16/Rev. 0

Some products and/or indications may not be regulatory cleared/approved in all markets. Please contact the local Ivoclar Vivadent sales office for the current national status.

These materials have been developed solely for use in dentistry. Processing should be carried out strictly according to the Instructions for Use. Liability cannot be accepted for damages resulting from failure to observe the Instructions or the stipulated area of application. The user is responsible for testing the products for their suitability and use for any purpose not explicitly stated in the Instructions. Descriptions and data do not constitute no warranty of attributes and are not binding. These regulations also apply if the materials are used in conjunction with products of other manufacturers.

Printed in Germany
© Ivoclar Vivadent AG, Schaan / Liechtenstein 7.2020/Ein