Instructions for Use
Table of Contents

3 **Telio System**

4 **Product Information**
 - Description
 - Material
 - Uses
 - CAD/CAM partners

9 **Fabricating a Telio CAD Hybrid Abutment Crown**
 - Treatment / fabrication process
 - Shade – tooth shade and abutment shade
 - Preparation for the CAD/CAM process
 - Layer thicknesses
 - Block selection
 - Finishing

12 **Completing the Telio CAD Structure**
 - Polishing technique chairside
 - Polishing technique labside

13 **Cementation of Ti Base / Telio CAD Structure**

19 **Seating and Aftercare**
 - Intraoral preparation
 - Seating the hybrid abutment crown
 - Care notes – Implant Care

21 **Designing the Emergence Profile**
 - Chairside
 - Labside

25 **General Information**
 - Frequently Asked Questions
Telio® System

Telio is a comprehensive system solution for temporary restorations which addresses dental technicians, CAD/CAM users and dentists alike.

All products are suitable for the fabrication of conventional and implant-supported temporaries. Their materials are compatible with each other and their shades are optimally coordinated.

Telio CS
For dentists: Self-curing temporary crown and bridge material, supplemented by a desensitizer and cement

Telio CAD
For CAD/CAM users: Resin blocks and discs for the efficient fabrication of temporary crowns, hybrid abutment crowns and bridges using the CAD/CAM technique

Telio Lab
For dental technicians: Temporary crown and bridge resin for the cold technique
Telio® CAD A16 are CAD/CAM-fabricated implant-supported hybrid restorations for individual, temporary single-tooth reconstructions. The material consists of a cross-linked polymer block (PMMA), enabling the fabrication of individual, monolithic hybrid abutment crowns which are directly cemented to a Ti base. Shape, esthetics and emergence profile can be easily designed and adjusted any time. Telio CAD A16 thus represents the basis for the subsequent permanent restorations with IPS e.max® CAD Abutment Solutions and IPS e.max Press Abutment Solutions.

Hybrid abutment crown

Hybrid abutment crowns are characterized by combining abutment and monolithic crown in one piece. This is an efficient two-in-one solution made of PMMA, which is directly cemented to a Ti base. Shape, esthetics and emergence profile can be easily designed and adjusted any time. For cases with immediate stress-bearing, a CAD/CAM-milled instant temporary can be fabricated. For this purpose, Telio CAD convinces users with its usual esthetic properties and sufficient strength, durability and efficiency.

The monolithically milled hybrid abutment crown is extraorally cemented to the Ti base by means of Multilink Hybrid Abutment HO 0. Then, the restoration is screwed onto the implant – in one piece. Finally, the screw channel is sealed with a composite (e.g. Tetric EvoCeram®) or a light-curing temporary restorative material (e.g. Telio CS Inlay / Onlay).

Ideally coordinated – Multilink® Hybrid Abutment HO 0

The auto-curing Multilink Hybrid Abutment composite cement together with SR Connect and Monobond® Plus are used for the cementation of Telio CAD on adhesive bases made of titanium / titanium alloys. This allows

– reliable adhesion due to high adhesion values;
– easy handling due to the convenient Automix syringe.
Material

Telio CAD

Telio CAD are cross-linked PMMA blocks for the fabrication of long-term temporaries by means of the CAD/CAM technique. As a result of the industrial polymerization process, the blocks feature a high material homogeneity. Polymerization shrinkage or inhibition layers no longer have to be taken into consideration. Given the CAD/CAM fabrication, the temporary can be easily reproduced at any time. Stains and/or layering materials can be used to apply final esthetic optimizations.

Physical properties

<table>
<thead>
<tr>
<th></th>
<th>Test method</th>
<th>Specifications</th>
<th>Example values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural strength</td>
<td>MPa EN ISO 10477</td>
<td>≥ 100</td>
<td>128</td>
</tr>
<tr>
<td>Flexural modulus</td>
<td>MPa EN ISO 10477</td>
<td>≥ 2800</td>
<td>3041</td>
</tr>
<tr>
<td>Water absorption</td>
<td>µg/mm² EN ISO 10477</td>
<td>≤ 40</td>
<td>22</td>
</tr>
<tr>
<td>Solubility</td>
<td>µg/mm² EN ISO 10477</td>
<td>≤ 7.5</td>
<td>0</td>
</tr>
<tr>
<td>Ball indentation hardness</td>
<td>MPa Internal method (358N, 30s)</td>
<td>–</td>
<td>176</td>
</tr>
</tbody>
</table>

Ti base

Ti bases are used for the fabrication of Telio CAD Abutment Solutions. The suitable Ti bases are selected in accordance with the CAD/CAM system used. Please observe the instructions for use and processing of the respective manufacturer.

Further information about the authorized CAD/CAM systems is available on the Internet from www.ivoclarvivadent.com.
Uses

Indications
Fabrication of temporary restorations by means of CAD/CAM technology.

Contraindications
- Use for permanent restorations
- Bruxism
- Failure to observe the requirements stipulated by the implant manufacturer for using the selected implant type (diameter and length of the implant must be approved for the respective position in the jaw by the implant manufacturer)
- Failure to observe the permissible maximum and minimum Telio CAD layer thicknesses
- Use of a luting composite other than Multilink Hybrid Abutment HO 0 for the cementation of Telio CAD to the Ti base
- **Intraoral** cementation of the Telio CAD structure to the Ti base
- All uses not stated as indications are contraindicated.

Important processing restrictions
- Processing of the blocks with non-authorized CAD/CAM systems
- Failure to observe the manufacturer’s instructions regarding the processing of the Ti base

Side effects
If the patient is known to be allergic to any of the components, Telio CAD and the other materials necessary for the fabrication should not be used.

Composition
- **Telio CAD**
 Components: Poly(methyl methacrylate) (PMMA), pigments
- **Multilink Hybrid Abutment HO 0**
 Components: Dimethacrylate, HEMA as well as fillers (barium glass, ytterbium trifluoride, spheroid mixed oxide and titanium dioxide)
- **SR Connect**
 Components: Methyl methacrylate, polymethyl methacrylate, dimethacrylates and initiators

Warnings
- Do not inhale grinding dust.
- SR Connect contains methyl methacrylate (MMA). MMA is highly flammable. Therefore, keep away from sources of ignition and do not smoke. MMA is an irritant and is irritating to eyes, respiratory organs and skin. Do not inhale vapours.
- The safety notes on the individual primary packaging and labels have to be observed.

CAD/CAM partners
Telio CAD has to be processed with an authorized CAD/CAM system. For questions regarding the different CAD/CAM systems, please contact the respective cooperation partners. Further information is available on the Internet from www.ivoclarvivadent.com.
Telio® CAD Abutment Solutions
Fabricating a Telio CAD Hybrid Abutment Crown

Working Steps

- Implantation, healing phase
- Shade determination, impression-taking
- CAD design
- CAM
 - Hybrid abutment crown
- Optional: Clinical try-in
- Optional: Characterization, adjustment
- Cementation of Ti base / Telio CAD A16
- Screwing in the hybrid abutment crown
- Sealing the screw channel
- Final check
- Aftercare

Ivoclar Vivadent Products

- Cervitec® Plus, Cervitec® Liquid
- OptraGate®, Virtual®
- Telio® CAD A16
- SR Nexco®, Telio® Lab LC
- Monobond® Plus, SR Connect, Multilink® Hybrid Abutment HO 0
- Tetric EvoCeram®, Tetric EvoFlow®, Telio® CS Inlay, Heliomolar®, Telio Add-On Flow
- Implant Care

Implant Care
Shade – tooth shade and abutment shade

For the Telio CAD hybrid abutment crown, the desired tooth shade results from the
- shade of the Telio CAD A16 block;
- the shade of Multilink Hybrid Abutment HO 0.

Preparation for the CAD/CAM process

Scanning
For the fabrication of Telio CAD Abutment Solutions, the clinical situation is digitalized either by a direct intraoral scan or an indirect model scan, depending on the CAD/CAM system used. For notes regarding the scan, please observe the manufacturer’s instructions of the CAD/CAM system.

Selecting a Ti base
The required Ti base is selected depending on the inserted implant and the CAD/CAM system used.
Layer thicknesses

Observing the geometry requirements of the Telio CAD structure is the key to success for a durable restoration. The more attention is given to the design, the better the final results and the clinical success will turn out to be.

The following basic guidelines have to be observed:

Minimum thicknesses
- occlusal: \(\text{min. 1.5 mm} \)
- circular: \(\text{min. 0.8 mm} \)
- Telio CAD A16 in the transition area to the Ti base rim: \(\text{min. 0.5 mm} \)

- The notes of the implant manufacturer regarding the maximum height of the hybrid abutment crown must be observed.
- In the transition area to the Ti base rim, the minimum thickness is 0.5 mm, which has to be continuously increased to 0.8 mm.

Block selection

When using a Ti base from Sirona, the dimensions of the interface to the Ti Base (S or L) have to be observed.

Available tooth shades Telio CAD A16 block with S or L interface:
LT A1, LT A2, LT A3, LT A3.5, LT B1, LT BL3
Finishing

Conventional cross-cut tungsten carbide burs are suitable for finishing and adjusting the Telio CAD structure. During finishing, make sure that the minimum layer thicknesses are observed. The milled Telio CAD structure is separated from the block by means of a fine cross-cut bur or a diamond separating disc.

Checking the fit of the Telio CAD structures on the Ti base

Carefully place the CAD structures on the Ti base and check the fit. Observe the position of the rotation lock.

Important!

- Do not finish the shoulder of the Telio CAD structure to prevent negatively affecting the Ti base.
- Finish the emergence profile if required taking the fit to the gingiva and the minimum thickness into account.

Finishing the outer surface of the Telio CAD structure (hybrid abutment crown)

- Smooth out the attachment point to the block with fine tungsten carbide burs taking the shape of the emergence profile and the proximal contacts into account.
- Check the proximal, occlusal and basal contacts.
- Design surface textures.

Clean the Telio CAD structure in an ultrasonic bath or blast with the steam jet before further processing.
Do not finish the shoulder to the Ti base.

Be careful when finishing the emergence profile to prevent affecting the fit to the gingiva.

Smooth out the attachment point to the block taking the shape of the emergence profile and the crown margin into account.

Adjust the surface texture where desired.
Polishing technique chairside

Astropol®

Step 1: Finishing with Astropol F (grey): With the Astropol F finisher, excess is removed and a smooth surface is achieved.
Step 2: Polishing with Astropol P (green): Polishing with Astropol P results in a smooth restoration surface.
Step 3: High-gloss polishing with Astropol HP (dusky pink): Do not apply pressure. The restoration surfaces are finished and polished using medium contact pressure.

Note:

Finishing and polishing is carried out using water spray for cooling and to remove the resulting polishing residue. If excess has already been removed with a fine-grain diamond grinding instrument or if the surfaces of the restoration are rather smooth, the first step (Astropol F) can be forgone.
Recommended speed: 7,500–10,000 rpm

OptraPol® NG

As an alternative, the OptraPol NG one-step polishing system can be used. The following instructions should be observed:
– Speed: 5,000–8,000 rpm
– Only use in conjunction with copious water spray.
The restoration is polished to a high gloss in only one polishing step and medium contact pressure.

Polishing technique labside

Prepolishing is performed with rubber polishers and silicone wheels with various abrasive levels from rough to fine. A high gloss is achieved with goat hair brush, cotton or leather buffing wheel as well as SR® Universal polishing paste.
Careful preparation of the bonding surfaces is a prerequisite for optimum adhesive cementation of the Telio CAD structure to the Ti base. The following paragraphs outline the required procedures.

Required materials
- SR Connect
- Monobond® Plus
- Multilink® Hybrid Abutment HO 0
- Liquid Strip
- Telio CAD A16 Ti base

Blasting
- Observe manufacturer’s instructions.

Cementation preparation Telio CAD
- Apply SR Connect on the adhesive surface to the Ti base, allow to react for 30 s and polymerize for 40 s with a polymerization device (Bluephase® Style).

Preparation for cementation
- Wet adhesive surface with Monobond Plus for 60 s.

Cementation
- Multilink® Hybrid Abutment HO 0

Covering the cementation joint
- Liquid Strip

Curing
- Auto-polymerization: 7 min

Polishing the cementation joint
- Customary polishers for resin materials and polishing paste

Preparation of the Ti base
The following procedure should be observed when preparing the Ti base for the cementation with the Telio CAD structure:
- Prepare the Ti base according to the instructions of the manufacturer.
- Clean the Ti base in an ultrasonic bath or with the steam jet and then dry with blown air.
- Screw the Ti base onto a model analog.
- Place the Telio CAD structure on the Ti base and mark the relative position of the components with a waterproof pen. This facilitates locating the correct position when the parts are assembled at a later stage.
- Do not blast or modify the emergence profile of the Ti base any way.
- If the manufacturer recommends that the bonding surface of the base be blasted, the following procedure should be observed:
 - Protect the emergence profile and the screw channel, e.g. by means of a silicone (Virtual® Extra Light Body Fast Set).
 - Carefully blast the bonding area according to the instructions of the manufacturer.
 - Remove silicone.
 - Clean the Ti Base in an ultrasonic bath or with the steam jet.
 - After the bonding surface has been cleaned, it must not be contaminated under any circumstances as this would impair the bond.
- Note: Aggressive blasting negatively affects the anti-rotation lock. Blasting with max. 50 µm at 1–2 bar (15–29 psi) pressure is recommended.
- Apply Monobond Plus on the cleaned bonding surface and allow to react for 60 s. After the reaction time, dry the remaining residue with water- and oil-free air.
- Seal the screw channel with a foam pellet or wax. The bonding surface must not be contaminated in the process.
Screw the Ti base onto a model analog. Mark the relative position to the structure with a waterproof pen.

The instructions of the implant manufacturer must be observed. Carefully blast the bonding surface with max. 50 µm and 1-2 bar (15-29 psi) pressure.

The instructions of the implant manufacturer must be observed. Protect the emergence profile and the screw channel, e.g., by means of silicone (Virtual Extra Light Body Fast Set).

Remove silicone and subsequently clean in an ultrasonic bath or with the steam jet.

Apply Monobond Plus on the cleaned bonding surface and allow to react for 60 s. After the reaction time, dry the remaining residue with water- and oil-free air.

Seal the screw channel with a foam pellet or wax.
Preparing the Telio CAD structure

The following procedure must be observed when preparing the Telio CAD structure for cementation on the Ti base:

– Do not blast the Telio CAD structure in preparation for the cementation.
– Clean the Telio CAD structure in an ultrasonic bath or with the steam jet and subsequently blow dry.
– After cleaning, any contamination of the bonding surface must be prevented, since contaminations negatively influence the bond.
– Thiny coat the bonding surface with SR Connect using a disposable brush and allow to react for 30 s. Subsequently, polymerize with a polymerization light (e.g. Bluephase Style) for 40 s.

<table>
<thead>
<tr>
<th>Device</th>
<th>Bluephase® Style</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Polywave®, 1100 ± 10% mW/cm²)</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Ivoclar Vivadent AG</td>
</tr>
<tr>
<td>SR Connect</td>
<td>40 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lumamat 100</th>
<th>Spectramat</th>
<th>Labolight LV-III</th>
<th>Solidilit V</th>
<th>Visio Beta Vario</th>
<th>HiLite Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivoclar Vivadent</td>
<td>Ivoclar Vivadent</td>
<td>GC</td>
<td>Shofu</td>
<td>3M</td>
<td>Heraeus</td>
</tr>
<tr>
<td>P2: 11 min</td>
<td>2 min</td>
<td>3 min</td>
<td>3 min</td>
<td>4 x 20 s</td>
<td>90 s</td>
</tr>
</tbody>
</table>

Note:
The SR Connect reaction time of 30 s must be observed: If SR Connect is applied as a conditioner for Telio CAD A16 for longer than that, the accuracy of fit may be compromised.
Cementation with Multilink® Hybrid Abutment

The following instructions must be observed in the cementation procedure:

– Lay out the cleaned and conditioned components (Telio CAD structure, Ti base) for cementation.
– Carry out the subsequent cementation procedure quickly and without interruption. The working time of Multilink Hybrid Abutment HO 0 is approximately 2 min at 23°C (± 1°C) or 73°F (± 1.8°F).
– As a general rule, attach a new mixing tip to the Multilink Hybrid Abutment HO 0 syringe prior to each use.
– Apply a thin layer of Multilink Hybrid Abutment HO 0 directly from the mixing tip to the bonding surface of the Ti base and to the bonding surface of the Telio CAD structure.
– Leave the mixing tip on the Multilink Hybrid Abutment syringe until the next use. The remaining cement polymerizes in the tip and functions as a seal.
– Place the Telio CAD structure on the Ti base in such a way that the position markings are aligned.
– Press the parts lightly and evenly together and check the correct relative position of the components (transition Ti base / Telio CAD structure).
– Subsequently, tightly press the components together for 5 s.
– Carefully remove excess in the screw channel, e.g. with a microbrush or brush, using rotary movements.

Important:

– Do not remove circular excess cement before curing has started, i.e. 2-3 min after mixing. Use a suitable dental lab instrument (e.g. Le Cron) for this purpose. Hold the components in place using light pressure.

– Apply glycerine gel (e.g. Liquid Strip) to the cementation joint to prevent the formation of an inhibition layer. Leave the gel on the cementation joint until polymerization is complete.
– Next, the composite cement auto-polymerizes completely within 7 min.
– **Important:** Do not move the components until Multilink Hybrid Abutment HO 0 has completely cured. Hold them in place using e.g. diamond-coated tweezers.
– After completed auto-polymerization, rinse off the glycerine gel with water.
– Cautiously polish the cementation joint with rubber polishers at a low speed (< 5,000 rpm) to avoid overheating. Finally, polish the surface of the PMMA structure to a high gloss using polishing paste.
– If there is any cement residue in the screw channel, remove it using suitable rotary instruments.
– Clean the restoration in an ultrasonic bath or with the steam jet.

Additional Notes:

Keep the cleaned and conditioned components that are to be cemented at hand. Attach a new mixing tip to the Multilink Hybrid Abutment syringe prior to each use.
Apply a thin layer of Multilink Hybrid Abutment HO 0 directly from the mixing tip to the bonding surface of the Ti base.

Place the Telio CAD A16 structure on the Ti base in such a way that the position markings are aligned. Press the parts lightly and evenly together and check the correct relative position of the components (transition Ti base / Telio CAD structure).

Carefully remove excess in the screw channel, e.g. with a microbrush or brush, using rotary movements.

Important: Do not move circular excess cement before curing has started, i.e. 2–3 minutes after mixing. Hold the components in place using light pressure.

Apply glycerine gel (e.g. Liquid Strip) to the cementation joint to prevent the formation of an inhibition layer.

The composite cement auto-polymerizes within 7 min. Important: Do not move the components until auto-polymerization is completed. Hold them in place during this time.
After completed auto-polymerization, rinse off the glycerine gel with water.

Cautiously polish the cementation joint with rubber polishers at low speed (< 5,000 rpm) to avoid overheating. Finally, polish the surface of the PMMA structure to a high gloss using polishing paste.

Remove any remaining cement residue in the screw channel with suitable rotating instruments. Do not damage the Ti base.

Telio CAD hybrid abutment crown after polishing and cementation.
Hybrid abutment crowns must be disinfected before being incorporated in the oral cavity. The local statutory provisions and hygiene standards that apply to dental practices have to be observed. For disinfection, the hybrid abutment crown can be immersed in a disinfectant suitable for PMMA materials. Dürr MD 520 with a reaction time of 5 min is a suitable impression disinfectant.

Intraoral preparation

Please observe the following procedure to prepare for the permanent cementation of the implant-supported restoration:

- Remove the gingiva former or healing cap.
- Clean the implant lumen.
- Check the periimplant tissue (emergence profile).

Seating the hybrid abutment crown

- Insert the hybrid abutment crown intraorally into the implant.
- Manually screw in the matching implant screw.
- Tighten the implant screw with a torque wrench (observe the instructions of the manufacturer).
- Check the screw channel for contamination / moisture and clean or dry with an air syringe, if necessary.
- Insert a sterile cotton or foam pellet or teflon tape into the screw channel.
- Seal the screw channel with a composite or a light-curing temporary restorative (e.g. Telio CS Inlay / Onlay) if the wear period is intended to be shorter than 6 weeks. For a longer wear period, a composite (e.g. Telio Add-On Flow, Tetric EvoCeram, Tetric EvoFlow, Heliomolar) has to be used, at best after conditioning of the surface with Monobond Plus and Heliobond.
- Polymerize with a curing light (e.g. Bluephase Style).
- Check the occlusion / articulation after polymerization and correct possible interfering spots with suitable fine-grain grinding instruments.
- Polish to a high gloss with silicone polishers (e.g. OptraPol / Astropol).
Insert the hybrid abutment crown intraorally into the implant.

Manually screw in the matching implant screw.

Tighten the implant screw with a torque wrench (observe the instructions of the manufacturer).

After insertion of e.g. a teflon tape, seal the screw channel with a composite (e.g. Tetric EvoCeram) in the matching shade.

Polymerize with a curing light (e.g. Bluephase Style).

After polymerization, check the occlusion / articulation and correct possible rough spots with suitable finishers or fine diamonds.

Polish to a high gloss using silicone polishers (e.g. Astropol P, Astropol HP or Astrobrush).

Completed Telio CAD hybrid abutment crown.
Telio® CAD Abutment Solutions
Designing the emergence profile

Chairside

Blast the area to be supplemented (Al₂O₃, 100 µm grit, 1–2 bar / 15–29 psi) or roughen with a rough diamond bur and then wet extraorally using Telio® Activator or SR Connect.

a) Use of Telio Activator

Wet the area to be supplemented extraorally with Telio Activator. To achieve even distribution, agitate the Activator over the entire surface for 30 s using a brush. After that, allow to react for another 30 to 60 s (total reaction time: 1 to 2 min). Now apply the Heliobond bonding agent, thinly disperse it with blown air and polymerize for ≥10 s (see Heliobond Instructions for Use).

b) Use of SR Connect

Thinly apply SR Connect extraorally on the conditioned surface of the area to be supplemented using a disposable brush, allow to react for 2–3 min and subsequently polymerize with light (see table on page 15).

Subsequently, apply Tetric EvoCeram in increments of max. 2 mm and adapt the material with a suitable instrument. Polymerize each layer with light (e.g. Bluephase Style) according to the instructions for use of the respective material. As an alternative, other light-curing Ivoclar Vivadent composites can be used.

Note: Do not apply any material on the Ti base as this may result in inaccuracies of fit.
Labside

Labside adjustment of a temporary, chairside-modified emergence profile
- Screw the emergence profile modified by the operator on a model analog.
- Take a silicone impression of the area of the emergence profile to be adjusted.
- Remove the material applied by the operator.

Labside design of the emergence profile
Erase the area to be redesigned on the model with stone or on the gingival mask.

With SR Nexco / Telio Lab LC (light-curing):
Blast the area to be supplemented (Al₂O₃, 100 µm, 1-2 bar / 15-29 psi). Then clean with steam and dry with oil-free compressed air.

a) Use of Telio Activator or Telio Lab Cold Liquid
Condition with Telio Activator or Telio Lab Cold Liquid. For this purpose, distribute Telio Activator / Telio Lab Cold Liquid evenly but generously on the conditioned surface and allow it to react for at least 2 min to a maximum of 4 min. Then, apply SR Composiv according to the Instructions for Use, cure and subsequently layer the Telio Lab LC or SR Nexco materials (see Telio CAD/Lab or SR Nexco Instructions for Use).

![Roughening, Telio Activator and SR Composiv](image1)

![Apply SR Nexco](image2)
b) Use of SR Connect
Apply a thin layer of SR Connect on the conditioned surface of the area to be supplemented using a disposable brush, allow to react for 2–3 min and subsequently polymerize. Then, layer Telio Lab LC or SR Nexco materials (see Telio CAD/Lab or SR Nexco Instructions for Use).

With Telio Lab (cold-curing):
Blast the area to be supplemented (Al₂O₃, 100 µm, 1-2 bar / 15-29 psi). Then clean with steam and dry with oil-free compressed air. Subsequently, condition with Telio Activator or Telio Lab Cold Liquid. For this purpose, distribute Telio Activator evenly but generously on the conditioned surface and allow it to react for at least 2 min to a maximum of 4 min. Then directly begin with the application of the Telio Lab material (see Telio CAD/Lab Instructions for Use).

After polymerization finish with cross-cut tungsten carbide burs and prepolish with rubber polishers and silicone wheels. A high gloss is achieved with goat hair brush, cotton or leather buffing wheel as well as SR Universal polishing paste.
Care notes – Implant Care

Implant Care comprises a coordinated product program for the professional care of patients during the different phases of an implant treatment and the aftercare throughout the rest of their lives. Products for professional cleaning and bacteria control contribute to ensure the long-term quality of the implant-supported restorations. Structural elements, periimplant tissue, natural teeth, dentures, gingiva and mucous membrane obtain optimum treatment and care with regard to their function and esthetic appearance.
Frequently Asked Questions

Is it possible to fabricate an abutment crown only with Telio CAD without the use of a Ti base?

No! For this indication, Telio CAD needs the support provided by the Ti base. In addition, the Ti base allows an optimum (industrially fabricated) fit to the implant.

Which Ti bases can be used for the fabrication of Telio CAD Abutment Solutions?

Only Ti bases of authorized CAD/CAM systems may be used. Further information about the CAD/CAM cooperation systems is available on the Internet from www.ivoclarvivadent.com.

Is it permissible to re-use the selected Ti base?

No. When using Telio CAD Abutment Solutions and, when indicated, IPS e.max CAD Abutment Solutions, the Ti base must not be re-used. The instructions of the manufacturer regarding the preparations for permanent cementation must be observed.

Is it permissible to modify the selected Ti base?

The Ti base must not be adjusted by grinding as this would compromise the fit of the Telio CAD structure. As far as the preparations for permanent cementation are concerned, the instructions of the manufacturer have to be observed.

Is a hybrid abutment crown indicated in the anterior region?

This indication depends on the position and inclination of the implant. If the screw channel extends through the oral surface, a hybrid abutment crown may also be fabricated in the anterior region.

Can a clinical try-in be conducted with the Telio CAD Abutment Solutions?

Yes. A clinical try-in may be performed. The Ti base and Telio CAD structure are temporarily joined in the laboratory by means of a silicone material, e.g. Virtual Extra Light Body Fast Set. This facilitates the intraoral handling during clinical try-in with the patient.

What material may be used for the cementation to the Ti base?

Exclusively Multilink Hybrid Abutment HO 0 may be used for cementation. This ensures a high-quality bond. Given the high opacity of the composite cement, complete optical masking of the Ti base is achieved and thus an excellent esthetic appearance ensured.

How is the Ti base prepared for the cementation with Multilink Hybrid Abutment?

If approved by the manufacturer of the Ti base, the adhesive surface is carefully blasted with Al₂O₃ with low pressure until an even mat surface is achieved. After cleaning, the area is conditioned with Monobond Plus.

How is the screw channel of a hybrid abutment crown sealed after seating?

After the restoration has been intraorally screwed down on the implant, the screw channel is sealed with a temporary or permanent restorative composite.